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Whole genome sequencing reveals
mycobacterial microevolution among
concurrent isolates from sputum and blood
in HIV infected TB patients
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Abstract

Background: In the context of advanced immunosuppression, M. tuberculosis is known to cause detectable
mycobacteremia. However, little is known about the intra-patient mycobacterial microevolution and the direction of
seeding between the sputum and blood compartments.

Methods: From a diagnostic study of HIV-infected TB patients, 51 pairs of concurrent blood and sputum M.
tuberculosis isolates from the same patient were available. In a previous analysis, we identified a subset with
genotypic concordance, based on spoligotyping and 24 locus MIRU-VNTR. These paired isolates with identical
genotypes were analyzed by whole genome sequencing and phylogenetic analysis.

Results: Of the 25 concordant pairs (49 % of the 51 paired isolates), 15 (60 %) remained viable for extraction of
high quality DNA for whole genome sequencing. Two patient pairs were excluded due to poor quality sequence
reads. The median CD4 cell count was 32 (IQR; 16–101)/mm3 and ten (77 %) patients were on ART. No drug
resistance mutations were identified in any of the sequences analyzed. Three (23.1 %) of 13 patients had SNPs
separating paired isolates from blood and sputum compartments, indicating evidence of microevolution.
Using a phylogenetic approach to identify the ancestral compartment, in two (15 %) patients the blood isolate was
ancestral to the sputum isolate, in one (8 %) it was the opposite, and ten (77 %) of the pairs were identical.

Conclusions: Among HIV-infected patients with poor cellular immunity, infection with multiple strains of M.
tuberculosis was found in half of the patients. In those patients with identical strains, whole genome sequencing
indicated that M. tuberculosis intra-patient microevolution does occur in a few patients, yet did not reveal a
consistent direction of spread between sputum and blood. This suggests that these compartments are highly
connected and potentially seed each other repeatedly.
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Background
The recent advances in molecular analytical methods
have increased our understanding of the possible hetero-
geneity of infection with Mycobacterium tuberculosis [1].
Several perspectives around this complexity in relation
to HIV-infection have been documented [2]. However,

little is known on the intra-patient mycobacterial diver-
sity and direction of seeding between the sputum and
blood compartments.
Clonal variants can be detected using Variable Number

of Tandem Repeats (VNTR) [3, 4] or Restriction Frag-
ment Length polymorphism (RFLP) of the IS6110-typing
genetic elements [5, 6]. The subtle genetic rearrange-
ments caused by microevolution in IS6110 [7] are
known to interrupt genes or modulate the expression of
adjacent genes. These can affect interpretation of mo-
lecular epidemiological tests [8–10], whereas if this
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happens in the VNTR regions, such changes can modify
the transcription of neighboring genes [11, 12]. These
changes may have a role in the infectivity of the bacteria
[13] and their survival within the host [14–17]. In a pub-
lished report, it was suggested that such microevolution
affected cavity formation, hence increased transmissibil-
ity of the emerging clonal variants [17].
The advent of whole genome sequencing (WGS)

has led to the identification of several limitations of
traditional molecular epidemiological methods in
ascertaining microevolution occurring outside the
classical targeted genetic elements [18, 19]. Micro-
evolutionary changes may further be modified against
a background of impaired immunity as a result of
AIDS. Whether HIV/AIDS is the main cause of a sys-
tematic heterogeneity of a within-host population of
M. tuberculosis as a result of advanced immune sup-
pression [20] or as a result of pathogen microevolu-
tion, remains a challenge. A recent study involving
four patients found as high a genetic diversity within
as between patients [21].
In the present study, we considered a large cohort of

HIV-positive patients who had concurrent pulmonary
and blood M. tuberculosis strains and were categorized
as identical, up to one spacer and/or locus difference,
using the conventional methods of spoligotyping (spacer
oligonucleotide typing) and Mycobacterial Interspersed
Repetitive Units (MIRU)-VNTR 24 loci. We applied
whole genome sequencing (WGS) to study microevolu-
tion among these strains by documenting differences in
distribution of single-nucleotide polymorphisms (SNPs)
between strains isolated from sputum and blood. We
also aimed at ascertaining the ancestral M. tuberculosis
strain between sputum and blood in each patient.

Methods
Study participants
From a previous study of 51 HIV-infected TB patients
who had concurrent blood and sputum M. tuberculosis
isolates at enrolment, we selected patients found to have
identical genotypes from our previous study [22] using
both spoligotyping [5] and MIRU-VNTR 24 loci
methods [3]. In this strain selection process, we consid-
ered pairs (n = 25) with maximum one spacer and/or
locus difference to be identical MTB-genotypes.

DNA sequencing
Whole genome sequencing of the DNA from M. tuber-
culosis isolates was performed on an Illumina HiSeq
platform at Genoscreen (Lille, France) or the Beijing
Genome Institute (BGI), China following the Illumina
TruSeq DNA sample preparation recommendations.

SNP and indel calling for genotype and drug resistance
To confirm genotypic classification assigned using previ-
ous methods, sequences were processed through an on-
line program, PhyResSE, which assigns lineages after
calling SNP and indels that are known to be lineage spe-
cific [23, 24]. Since dynamic changes in M. tuberculosis
have been found to occur during acquisition and fixation
for drug resistance [25], we also used the same program
to call for drug-specific SNPs and indels.

Mapping of the fastq reads and complete variant calling
For each sequence, we used the nesoni version 0.13 pipe-
line (https://github.com/Victorian-Bioinformatics-Consor-
tium/nesoni) to remove Illumina adaptors sequences and
low quality bases from reads using a minimum read qual-
ity of 10 and length of 45. We employed the nesoni bowtie
tool for read alignment using the most recent common
ancestor of the M. tuberculosis complex (MTBc;
H37rv_NC_018143.1) as referenced [26, 27]. To look for
differences between the reads and the reference genome,
we used nesoni consensus to process the mapped reads
for the SNP calling process. Quality mapping thresholds
included removing reads that mapped to more than 1 pos-
ition, minimum coverage of 10, minimum mapping qual-
ity of the SNP of 20 and minimum read coverage of 66 %.
A tabular list of all SNPs and indels per isolate was

created using nesoni nway (Additional file 1), from
which a SNP alignment was created using custom py-
thon scripts.

Phylogenetic analysis of sequence data
To infer intraspecific phylogenies with the expected
small distances, we constructed a maximum likelihood
tree using Randomized Axelerated Maximum Likelihood
(RAxML) version 8.2 [28], based upon the SNP align-
ment and employing a generalized time-reversible
(GTR) CAT model with Stamatakis ascertainment bias
correction [28]. We calculated 100 bootstrap replicates
for support of the tree nodes. We also created a neigh-
bor joining distance matrix based upon the SNP align-
ment using the Molecular Evolutionary Genetics
Analysis (MEGA) version 5.2.2 [29].

Results
Of the 25 patients with identical M. tuberculosis geno-
types, 15 (60.0 %) had viable mycobacterial bacilli on
subculture and enough DNA for whole genome sequen-
cing. Two isolates had sequence reads of poor quality
and were eliminated from the analysis. We analyzed data
for 13 (86.7 %) of the patients with good quality se-
quence reads from both blood and sputum (Fig. 1).
The 13 patients included 8 (61.5 %) women and had a

median age of 32 (interquartile range; IQR, 28–37) years.
The median CD4 cell count was 32 (IQR; 16–101)/mm3;
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10 (76.9 %) were taking ART and only one patient was
previously treated for tuberculosis. Lineage assignments
based on SNP detection found five (38.5 %) patients had
M tuberculosis lineage three (L3; Delhi/CAS) whereas
eight (61.5 %) had lineage four (L4; Haarlem and
LAM11_ZWE each 12.5 %, LAM3 and S convergent and
T2; each 37.5 %) (Fig. 2). These results were in line with
those found by spoligotype in the parent study [22]. The
SpolDB4 unassigned T2 were found to have SNPs spe-
cific to T2- Uganda including mutations in the gyrA
gene at position T80A. No drug resistance mutations
were identified in any of the sequences analyzed (Fig. 2).

SNP calling and neighbor joining tree for concurrent
sputum and blood M tuberculosis isolates
Of the 13 patients, three (23.1 %) had SNPs (indicating
evidence of microevolution) detected when comparing
their concurrent sputum and blood M. tuberculosis iso-
lates. One SNP was seen in a patient’s pair that was con-
sidered a clonal variant, single locus variants (SLV) by
MIRU-VNTR 24 loci (Fig. 2) and the two were from iden-
tical pairs between pulmonary and blood compartments.
The identified SNPs, their corresponding H37RV genome

coordinates and the gene function as stated in Tuberculist
online database [30] are indicated (Additional file 2).
The RAxML analysis using SNPs did not show a dif-

ference in branch lengths and thus could not determine
the ancestral strain between most of blood vs. sputum
pairs. We therefore performed phylogenetic analysis to
identify the ancestral compartments through a distance
matrix derived NJ tree generated using MEGA. In a total
of two (15.4 %) patients the blood isolate was ancestral
to the sputum isolate, in one (7.7 %) it was the opposite,
and ten (76.9 %) of the pairs were identical (Fig. 3).

Discussion
The advent and extended use of WGS strategies have in-
creased our understanding of the transmission, epi-
demiological and molecular dynamics of the M.
tuberculosis pathogen [1, 18, 31]. Recently, WGS analysis
has been mainly applied to identify the number of SNPs
to document the M. tuberculosis micro-evolutionary
events between and within patients [21, 32]. Intra-
patient M. tuberculosis microevolution has been found
to be similar to the inter-patient microevolution and has
been suggested to impact on the expected strain diver-
sity within a transmission chain [21].

Fig. 1 Flow chart showing the participant with concurrent sputum and blood M. tuberculosis sequences. MIRU =Mycobacterial Interspersed
Repetitive Units, VNTR = Variable Number of Tandem Repeats
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Fig. 3 Neighbor Joining SNP distance matrix based tree for potential ancestral strain comparing sputum and blood M. tuberculosis strains.
Created using MEGA 5.2.2; Visualized and colored using Fig Tree 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/); Black = Ancestral strain,
Green = Identical strains, p = patient, Red = descendant strains

Fig. 2 Participants’ with concurrent sputum and blood M tuberculosis isolates and DNA sequences. Ω = lineage based on spolDB4 online
database, sub-lineage ** = spolDB4 unassigned with T2 SNPs, MIRU-VNTR = Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem
Repeat, MIRU-VNTR* = Mixed allele at that locus, † = All drug susceptible and with no resistance mutations, Squared pairs = single locus variants,
Rectangle in MIRU table = single locus variants (SLV)
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In the current study, we applied WGS to isolates of M.
tuberculosis, which were identical by conventional typing
methods, from HIV-infected patients with poor cellular
immunity, in half of whom infection with multiple
strains of M. tuberculosis was found. Our study docu-
mented three (23.1 %) patients with SNPs (indicating
evidence of microevolution) when comparing their con-
current sputum and blood M. tuberculosis isolates. Al-
though high intra-patient variability may be expected
during the process of resistance acquisition [25, 33], all
isolates in our study from both compartments were drug
susceptible with no resistance conferring mutations. Cat-
egorizing these isolates as identical by both spoligotyping
and MIRU-VNTR 24 loci typing methods, yet with differ-
ent SNPs, underscores the power of whole genome
sequencing in ascertaining microevolution occurring out-
side the classical targeted genetic elements of M. tubercu-
losis compared to traditional molecular epidemiological
methods [18, 19]. Small changes have been implicated to
influence bacterial phenotypes, such as strain infectivity
[13] and within-host pathogen survival [14–17].Moreover,
clonal MDR-variants of concurrent pulmonary and dis-
seminated tuberculosis strains have been documented [34]
which need to be recognized for appropriate therapy to be
initiated. More complex intra-patient microevolution of
MDR-MTBC strains under treatment has been docu-
mented through WGS analysis [35].
Studies have suggested dissemination of pulmonary tu-

berculosis is due to impaired immunity including
compartmentalization [2, 20, 36, 37] and/or reinfection
[38]. Some studies have hypothesized pulmonary infec-
tion as a spill-over of the lymphatic or haematogenous
dissemination of tuberculosis [39–41]. However, few
studies have approached these hypotheses using concur-
rent clinical M. tuberculosis isolates. Through a neighbor
joining SNP distance matrix based tree, the present
study found M. tuberculosis cross-seeding between pul-
monary and blood compartments using clinical M. tu-
berculosis isolates. This may be due to the high
connectedness of these compartments that may lead to
repeated seeding in-between these compartments under
extensive immunosuppression. Blood as the origin of tu-
berculosis disease, contrary to the dogma, may be sup-
ported by the fact that M. tuberculosis can persist in
several sites and cell types that might constitute reser-
voirs that can reactivate infection producing extrapul-
monary tuberculosis with or without lung involvement
[42]. Indeed in the main study, 12/182 (6.6 %) of the tu-
berculosis patients had MTB cultured from blood with
two negative sputum cultures [43]. The strains with no
clear direction of seeding between sputum and blood
compartments could have been influenced by advanced
HIV/AIDS immune suppression resulting to increased
early dissemination [20].

Our study has some limitations; complete genome se-
quences can currently only be obtained from cultured
isolates, which may have introduced a bias, as mixed in-
fections may have been missed if culture favored one
genotype [44]. However, where blood and sputum MTB
strains were identical, this strongly suggests blood and
sputum acted as one compartment. Conversely, these
findings validate sequencing techniques and suggest that
in vitro culture did not add significant bias. Further-
more, we cannot exclude that microevolution occurred
in vitro and also could not compare the observed micro-
evolutionary changes between different levels of im-
paired immunity. However, the current study suggests
that M. tuberculosis micro-evolutionary events can occur
over a short time scale during disease progression.
Additionally, although the small sample size of our

study may have reduced the power of our conclusions, it
is worth noting that the isolation of paired strains from
blood and sputum is notoriously difficult. This is due to
the fact that mycobacteremia only occurs in patients with
advanced immunosuppression, who fortunately are less
prevalent since the wide roll-out of antiretroviral therapy.
Moreover, since the most widely used automated liquid
culture system today, the BD MGIT 960, is not designed
for mycobacterial blood cultures, we expect that our sam-
ple size will unlikely be surpassed by future studies.

Conclusions
In conclusion, among HIV-infected patients with poor
cellular immunity, infection with multiple strains of M.
tuberculosis was found in half of the patients. In the pa-
tients with identical strains, whole genome sequencing
showed minimal M. tuberculosis intra-patient microevo-
lution and did not reveal a consistent direction of spread
between sputum and blood, suggesting that these com-
partments are highly connected and potentially seed
each other repeatedly. However, SNP analysis of the
whole genome sequencing results indicates that micro-
evolutionary events can occur even over a short time
scale during disease progression, and may be observed
even in a small samples size. Future studies are needed
to enrich our understanding of the role of microevolu-
tion in tuberculosis disease presentation and progres-
sion. The almost binary distinction between infections
with different strains versus the apomictic identical
strains that populate blood and sputum compartments
warrants further investigation. We recommend a larger
set of sputum/blood pairs to support the interpretation
that microevolution occurs and that reseeding continu-
ally occurs between compartments among severely im-
munocompromised HIV-infected individuals. This
would also allow for an assessment of the clinical pa-
rameters that may be associated, for example, with viral
suppression status due to, ART.
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Additional files

Additional file 1: A tabular list of all SNPs and indels per M. tuberculosis
isolate, sputum and blood, created using nesoni nway program.
Key: Highlighted = SNPs between concurrent sputum and blood M.
tuberculosis isolates, p = patient. (XLS 15043 kb)

Additional file 2: SNPs and SNP functions identified by comparing
concurrent sputum and blood M. tuberculosis strains from HIV-infected
individuals. (DOC 30 kb)
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