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Abstract

Background: Salmonella enterica serotype Enteritidis (S. Enteritidis) remains a major foodborne pathogen in
North America yet studies examining the spatial epidemiology of salmonellosis in urban environments are
lacking. Our ecological study combined a number of spatial statistical methods with a geographic information
system to assess area-level heterogeneity of S. Enteritidis infection rates in the city of Toronto.

Methods: Data on S. Enteritidis infections between January 1, 2007 and December 31, 2009 were obtained from
Ontario’s surveillance system, and were grouped and analyzed at the forward sortation area (FSA)-level (an area
signified by the first three characters of the postal code). Incidence rates were directly standardized using the
FSA-level age- and sex-based standard population. A spatial empirical Bayes method was used to smooth the
standardized incidence rates (SIRs). Global clustering of FSAs with high or low non-smoothed SIRs was evaluated
using the Getis-Ord G method. Local clustering of FSAs with high, low, or dissimilar non-smoothed SIRs was
assessed using the Getis-Ord Gi* and the Local Moran’s I methods.

Results: Spatial heterogeneity of S. Enteritidis infection rates was detected across the city of Toronto. The non-smoothed
FSA-level SIRs ranged from 0 to 16.9 infections per 100,000 person-years (mean = 6.6), whereas the smoothed SIRs ranged
from 2.9 to 11.1 (mean = 6.3). The global Getis-Ord G method showed significant (p≤ 0.05) maximum spatial clustering of
FSAs with high SIRs at 3.3 km. The local Getis-Ord Gi* method identified eight FSAs with significantly high SIRs and one
FSA with a significantly low SIR. The Local Moran’s I method detected five FSAs with significantly high-high SIRs, one FSA
with a significantly low-low SIR, and four significant outlier FSAs (one high-low, and three low-high).

Conclusions: Salmonella Enteritidis infection rates clustered globally at a small distance band, suggesting
clustering of high SIRs in small distinct areas. This finding was supported by the local cluster analyses, where
distinct FSAs with high SIRs, mainly in downtown Toronto, were detected. These areas should be evaluated by
future studies to identify risk factors of disease in order to implement targeted prevention and control programs.
We demonstrated the usefulness of combining several spatial statistical techniques with a geographic
information system to detect geographical areas of interest for further study, and to evaluate spatial processes
that influenced S. Enteritidis infection rates. Our study methodology could be applied to other foodborne
disease surveillance data.
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Background
Salmonellosis continuously poses a significant health
burden to human populations globally, affecting annu-
ally an estimated 93.8 million persons worldwide [1]. In
Canada, an estimated 109,384 non-typhoidal Salmon-
ella infections are acquired domestically, of which 80 %
are considered to be foodborne [2]. Within the last
decade, an increase in the number of Salmonella enter-
ica serotype Enteritidis (S. Enteritidis) infections has
been reported in Canada [3], the United States of
America [4], and the European Union [5], such that S.
Enteritidis has become the top serotype among the
non-typhoidal salmonellae. Salmonella Enteritidis infec-
tions in humans have typically been associated with
consumption of contaminated chicken products [6, 7]
and eggs [8, 9]. However, salmonellosis has recently
been linked to other factors, including international
travel [10, 11], demographic [12, 13] and socioeconomic
[14, 15] characteristics, and animal contact [7, 16].
Country- or region-level studies have used various

spatial epidemiological methods to identify clustering of
health conditions, including notifiable gastrointestinal ill-
ness [17], giardiasis [18], campylobacteriosis [19, 20], influ-
enza B [21], Escherichia coli O157 [22, 23], dengue fever
[24, 25], traumatic brain injury [26], stroke [27], and myo-
cardial infarction [27]. Moreover, city-level studies have
evaluated spatial differences in neighbourhood-level infec-
tion rates of rotavirus in Berlin, Germany [28], pandemic
influenza A in Hong Kong [29], tuberculosis in Linyi City,
China [30], and typhoid fever [31–33] and dengue [34] in
the Dhaka metropolitan area of Bangladesh.
Our study area involved the city of Toronto—the cap-

ital of Ontario, Canada located on the shore of Lake
Ontario in the southern part of the province (Fig. 1). In
2009, an estimated 2.7 million people lived in the city,
accounting for 21 % of Ontario’s total population [35].
Toronto’s forward sortation areas (FSAs; areas signified
by the first three characters of the postal code; see
Study design and data sources section) have diverse
age- and sex-based populations that can affect area-
level infection rates, due to sex differences of salmonel-
losis rates [36, 37], and younger and older residents’
higher salmonellosis rates [13, 16, 38]. Standardization
of area-level infection rates based on the age and sex
distribution of the population has been recommended
to overcome this problem [39]. Moreover, infection
rates in small population areas can become unstable
and unreliable. The spatial empirical Bayes (SEB)
smoothing method has been proposed to reduce the
random variation of infection rates linked with these
areas [39, 40].
Despite the abundance of research studies that have

assessed large scale (country- or region-level) spatial
processes that influence foodborne infections, few

studies have assessed small scale (city- or FSA-level)
spatial clustering of salmonellosis rates. Small area stud-
ies in urban environments are useful as a first step for
identifying areas with high infection rates, where future
studies can be conducted to identify novel individual-level
risk factors, which can assist in the design of local preven-
tion and control programs [21, 28]. Our retrospective,
population-based, ecological study used a systematic
approach that combined spatial exploratory and statistical
methods with a geographic information system (GIS)
(Fig. 2), to evaluate the spatial heterogeneity of S. Enteriti-
dis infection rates across the city of Toronto. Moreover,
two local spatial cluster detection methods were compared
to identify their strengths and weaknesses in analyzing
small-scale infectious disease data.

Methods
Study design and data sources
Forward sortation areas are well-delimited areas signified
by the first three characters of the postal code; they are
established by the Canada Post Corporation based on
the mail distribution zones of postal facilities. Forward
sortation area-level population estimates and FSA carto-
graphical boundary files were acquired from the 2006
Census of Canada [35, 41].
In Ontario, salmonellosis is a reportable disease under

provincial legislation [42]. A diagnosis of salmonellosis is
made after isolation of Salmonella spp. (excluding
Salmonella Typhi or Paratyphi) from an appropriate
clinical sample (the majority are stool samples) by public
health, hospital, or private laboratory staff [43]. All iso-
lates are sent to the Toronto Public Health Laboratories
for confirmation and serotyping using the Kauffmann-
White scheme [44]. Salmonellosis cases must be followed
up by local public health unit staff, and investigation find-
ings must be reported to the Ontario Ministry of Health
and Long-Term Care (MOHLTC) through the integrated
Public Health Information System (iPHIS). This surveil-
lance system is a repository for all reportable disease data
in Ontario; no major modifications in salmonellosis
reporting requirements, or testing or case follow-up pro-
tocols were noted during the study period, which makes
salmonellosis case ascertainments robust and reliable.
We obtained case information from all reported S.

Enteritidis infections from the city of Toronto between
January 1, 2007 and December 31, 2009 that were cap-
tured within iPHIS.

Statistical analysis
Spatial heterogeneity of S. Enteritidis infection rates was
assessed by following several analytical steps, which are
outlined in Fig. 2, and described in detail below.
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Fig. 1 Map of Ontario, Canada highlighting the location of the study area
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Exploratory spatial analysis
In order to obtain stable infection rate estimates, we
excluded FSAs with less than 500 residents. Annual
standardized incidence rates (SIRs) were calculated for
each FSA using direct standardization [45, 46] in STATA
Intercooled 10.1 statistical software (Stata Corporation,
College Station, TX, USA). The annual SIR was esti-
mated by calculating the observed rate for each age-sex
category within each FSA, and multiplying it by the
age-sex population numbers, which were obtained from
the 2006 Census of Canada [35]. Age categories were in
five-year increments from 0 to > 85 years [47]. To ac-
count for unstable SIRs of areas with small populations
[48], we smoothed the rates using the SEB method [49]
with 2nd order queen contiguity weights [50] in GeoDa
version 095i software (Spatial Analysis Lab, University
of Illinois Urbana-Champaign, IL, USA). The non-
smoothed and smoothed annual SIRs were presented as
the number of S. Enteritidis infections per 100,000
person-years per FSA, and were visualized using choro-
pleth maps with ArcGIS 10.1 (ESRI Inc., Redlands, CA,

USA) using Jenk’s categorization [51] to define the crit-
ical intervals for mapping. Jenk’s natural breaks classifi-
cation was developed to identify the ideal arrangement
of values (e.g. rates) into different classes, by reducing
the variance within classes and maximizing the variance
between classes [51].

Spatial statistics
Each FSA was represented by a polygon, its centroid,
and its distinct non-smoothed SIR. The Spatial Statis-
tics Tool in ArcGIS 10.1 was used to identify global and
local spatial clusters. Euclidean distance bands were
used to measure distances from each FSA’s centroid to
neighbouring FSAs’ centroids (see Global clustering
(Getis-Ord General G) subsection). To avoid the omis-
sion of local factors by imposing sharp neighbourhood
boundaries, the “zone of indifference” conceptualization
parameter was chosen for our global and local cluster
analyses. Using this parameter, the target FSA and all
neighbouring FSAs within a specified distance band are
given a maximum weight; once this critical distance is

Exploratory spatial data analysis 

• Calculating area-level standardized  

incidence rates (SIRs) 

• Evaluating spatial properties 

(Data visualization - Disease mapping) 

Spatial statistics 

• Evaluating global indicators  

of spatial autocorrelation  

• Evaluating local indicators of  

spatial autocorrelation (LISA) 

Interpretation of results 

Hot spot analysis of SIRs (Getis-Ord 
Gi*) 

Visualization of areas with high and 
low SIRs with a map of FSAs 

Visualizing area-level non-
smoothed SIRs with a choropleth
map 

Visualizing area-level spatial 
empirical Bayes smoothed SIRs 
with a choropleth map 

Cluster and outlier analysis of SIRs 
(Anselin Local Moran's I)  

                           
Visualization of areas with high, low, 
and outlier SIRs with a map of FSAs 

High/low clustering of SIRs (Getis-
Ord General G) 

                 
Illustrating spatial clusters of areas 
with high/low SIRs for a series of 
Euclidian distances 

Fig. 2 Flow chart outlining the analytical steps used to evaluate area-level Salmonella Enteritidis infection rates
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exceeded, neighbouring FSAs are assigned smaller and
smaller weights as the distance from the target FSA
increases [52, 53]. The null hypothesis for both global
and local cluster analyses is that there is complete
spatial randomness (i.e. FSAs with high or low non-
smoothed SIRs are randomly distributed across the
study area). The null hypothesis is rejected when FSAs
with high or low SIRs are more spatially clustered than
would be expected if the underlying spatial processes
were truly random. When the null hypothesis is
rejected, a Z-score and a p-value are given for the iden-
tified cluster [52, 53].

Global clustering (Getis-Ord General G)
Global spatial clustering of FSAs with high or low non-
smoothed SIRs across Toronto was evaluated using the
Getis-Ord General G statistic [53]. Distance bands that re-
quired each FSA to have at least one neighbour were
manually selected; for our data, the minimum distance
band was 3.3 km. Several Euclidean distances (3.3 to
5.9 km, with 100 m increments) were selected and in-
cluded in the model to identify the distance bands with the
highest and lowest statistically significant Z-scores. A large,
positive Z-score (values ≥ 1.96) and a significant p-value
(p ≤ 0.05) signified that FSAs with high SIRs were clustered
in the study area, whereas a large, negative Z-score
(values ≤ -1.96) and a significant p-value signified that FSAs
with low SIRs were clustered in the study area [53].

Local clustering
For the local cluster analyses, we used the distance band
identified at the global clustering step that showed
maximum spatial clustering of FSAs with high non-
smoothed SIRs (see Global clustering (Getis-Ord
General G) subsection).

Hot spot analysis (Getis-Ord Gi*)
Local spatial clusters of FSAs with high or low non-
smoothed SIRs were examined using the Getis-Ord Gi*
statistic [53, 54]. The statistic compares the local sum
of SIRs (the sum of the SIR of the targeted FSA and its
neighbouring FSAs) to the sum of SIRs of all FSAs
within the study area. A statistically significant large,
positive Z-score signifies a local high-rate cluster (hot
spot). Hot spots are detected when FSAs with high rates
are surrounded by FSAs with high rates; the observed
local sum of SIRs is higher than the expected local sum
and the difference is too large to be the result of chance
alone. Similarly, a statistically significant large, negative
Z-score signifies a local low-rate cluster (cold spot),
where FSAs with low rates are surrounded by FSAs
with low rates [51–54]. Statistically significant hot and
cold spots were visualized using a map with FSA
boundaries.

Cluster and outlier analysis (Anselin Local Moran’s I)
We also used the Local Moran’s I statistic to identify
local spatial clusters of FSA-level non-smoothed S.
Enteritidis SIRs during the study period [55]. The statis-
tic identifies hot spots (high-high), cold spots (low-low),
and spatial outliers (high-low and low-high). A positive
Local Moran’s I value indicates that the target FSA is
surrounded by FSAs with similar rates (high-high: FSA
with a high rate surrounded by FSAs with high rates;
low-low: FSA with a low rate surrounded by FSAs with
low rates). A negative Local Moran’s I value indicates
that the target FSA is surrounded by FSAs with dissimi-
lar rates (high-low: FSA with a high rate surrounded by
FSAs with low rates; low-high: FSA with a low rate
surrounded by FSAs with high rates) [55]. The designa-
tion of FSAs to these four classes depends on the results
of a statistical test. This test performs random compari-
sons among the target FSA’s and its neighbours Moran’s
I values to all FSAs’ Moran’s I values within the study
area, and compares the observed Moran’s I value to the
value corresponding to the random permutations (ex-
pected Moran’s I value) [55]. If the test is significant
(p ≤ 0.05), the observed Moran’s I value is significantly
larger (or smaller in the case of a negative relationship)
than the expected Moran’s I value. If the test is not
significant, the FSA remains in a neutral class (no
spatial dependence) [55]. Statistically significant high-
high, low-low, and outlier local clusters were visualized
using a map with FSA boundaries. The two local clus-
ter analytical methods were compared to evaluate their
efficacy in identifying local infection clusters (e.g.
sensitivity analysis).

Ethics review
The University of Guelph Ethics Review Board was con-
sulted since we used surveillance data for a reportable
disease of humans; however, ethics approval was not
required because our data did not contain any personal
or health information that could be connected back to
the original identifiers.

Results
Descriptive statistics
Based on the 2006 Census, there were a total of 102
FSAs in the city of Toronto; the FSA-level population
size ranged from 5 to 65,125 persons. Ninety-five FSAs
met the inclusion criteria, for which the population size
ranged from 2,165 to 65,125 persons (mean = 26,345).
A total of 495 laboratory confirmed S. Enteritidis infec-
tions were identified in the MOHLTC’s iPHIS database
during the study period (165 cases in 2007, 168 in
2008, and 162 in 2009). In total, 22 cases (4.4 %) were
excluded because of missing FSA data (14 cases in
2007, 4 in 2008, and 4 in 2009). Thus, there were 473
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A) Non-smoothed standardized incidence rates (SIR) of Salmonella Enteritidis 
infections 

B) Spatial Empirical Bayes smoothed SIR of Salmonella Enteritidis infections 

Fig. 3 Distribution of non-smoothed (A) and smoothed (B) Salmonella Enteritidis infection rates in Toronto, 2007-2009 (n = 473 cases; n = 95
forward sortation areas). Direct standardization was used to calculate forward sortation area (FSA)-level annual standardized incidence rates
(SIRs) of Salmonella Enteritidis infections. Spatial empirical Bayes smoothing method with 2nd order queen contiguity weights in GeoDa
software (Spatial Analysis Lab, University of Illinois Urbana-Champaign, IL, USA) was used to smooth the SIRs. Maps prepared in ArcGIS 10.1
(ESRI Inc., Redlands, CA, USA)
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cases (151 in 2007, 164 in 2008, and 158 in 2009) avail-
able for analysis. No outbreaks were declared by the
MOHLTC during the study period.

Exploratory spatial analysis
Non-smoothed and smoothed standardized incidence rates
Figure 3 illustrates the non-smoothed and smoothed an-
nual SIRs of S. Enteritidis infections per FSA in Toronto.
The non-smoothed FSA-level SIRs ranged from 0 to 16.9
infections per 100,000 person-years (mean = 6.6). The
smoothed SIRs ranged from 2.9 to 11.1 (mean = 6.3).

Spatial statistics
Global clustering (Getis-Ord General G)
The Getis-Ord General G statistic results are shown in
Figs. 4 and 5. Statistically significant positive Z-scores
(1.99 - 2.34) were observed between 3.3 and 4.7 km. The
highest statistically significant positive Z-score was ob-
served at 3.3 km (Z = 2.34, p = 0.019), signifying max-
imum spatial clustering of FSAs with high SIRs at this
distance band (Fig. 5). There were no statistically signifi-
cant negative Z-scores.

Local clustering
Hot spot analysis (Getis-Ord Gi*)
Eight FSAs with high SIRs (hot spots) (M5C, M5E,
M5G, M5M, M5R, M5S, M5T, M9R) and one FSA with
a low SIR (cold spot) (M3H) were detected using the

Getis-Ord Gi* method (Table 1, Fig. 6, Additional file 1:
Legend 1). The majority of hot spots (6 of 8) were
located in south-central (i.e. downtown) Toronto.

Cluster and outlier analysis (Anselin Local Moran’s I)
Five FSAs with high-high SIRs (M4Y, M5E, M5G,
M5M, M9R), one FSA with a low-low SIR (M3H), and
four outlier FSAs (one high-low (M3M) and three low-
high (M4G, M5C, M5R)) were identified using the Local
Moran’s I method (Table 1, Fig. 7, Additional file 1:
Legend 1). Three FSAs with high-high SIRs were detected
in downtown Toronto.

Discussion
Salmonella Enteritidis infection rates clustered globally
and locally in the city of Toronto. The small distance
band at which high S. Enteritidis infection rates clus-
tered globally suggests that infection rates were localized
to small distinct areas. This finding was subsequently
supported by the local cluster analyses, where distinct
FSAs, mainly in downtown Toronto, were identified as
areas with significantly high SIRs. The two local cluster
detection methods (Getis-Ord Gi* and Local Moran’s I)
identified a number of the same clusters, suggesting
consistency between these methods, and indicating the
robustness of our study results.
We assessed the area-level spatial heterogeneity of S.

Enteritidis infection rates across the city of Toronto by
combining spatial exploratory and spatial statistical
methods with GIS. A systematic approach was used, in
which analytical steps succeeded each other, starting
from more general to more specific stages that in-
creased our study’s specificity. Each step provided add-
itional information to enhance our understanding of
the spatial epidemiology of S. Enteritidis infection rates
in Toronto. However, these steps were sometimes con-
nected and difficult to delineate; consequently, a holis-
tic approach that considers the results of all steps
should be followed when interpreting our findings.
The variability of small scale infection rate estimates

was accounted for by using the SEB smoothing method.
This method reduces the variation of infection rate esti-
mates of areas with unbalanced rates, by shrinking the
less stable estimates toward the local mean if local clus-
tering of high-rate areas are detected, and toward the
global mean if no local clustering is present [48]. The
major advantage of smoothing is that it focuses atten-
tion on the overall spatial disease trends, which
increases the ability to identify areas with high or low
rates. However, as noted with our data, areas can be
misclassified by the smoothing method. For example,
one high-rate area (M9R) that was evident on the non-
smoothed SIR map and subsequently detected by both
local cluster detection methods, was hidden by the

Fig. 4 Global clusters of areas with high Salmonella Enteritidis
infection rates in Toronto at different distances. Results of the
Getis-Ord G statistic. Large, positive Z-scores (e.g. values ≥ 1.96)
indicate global clustering of forward sortation areas with high
standardized incidence rates. The zone of indifference
conceptualization parameter was used for the analysis. Statisti-
cally significant at p ≤ 0.05
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smoothing process. Fewer FSAs with high rates were
identified using the smoothed SIRs compared to the
non-smoothed SIRs; nonetheless, in the central and
south-central parts of the city, both methods identified
many of the same high-rate FSAs. The SEB smoothing
method reduced the highest non-smoothed SIR by 5.8
units, indicating that there were FSAs with unstable
SIR estimates.

When analyzing small scale area-level data, the
spatial estimates can become unbalanced at the study
area limits where FSAs do not have neighbours. More-
over, because FSAs’ boundaries are arbitrary delimita-
tions based on the mail distribution zones of postal
facilities, they might not always delineate areas based
on their spatial characteristics. To account for potential
“edge” and “zoning” effects, we used the “zone of

Fig. 5 Maximum spatial clustering of areas with high Salmonella Enteritidis infection rates in Toronto at 3.3 kilometers. Results of the Getis-Ord G
statistic. A large, positive Z-score (values≥ 1.96) indicates global clustering of forward sortation areas with high standardized incidence rates.
The zone of indifference conceptualization parameter was used for the analysis. Statistically significant at p≤ 0.05

Table 1 Forward sortation areas identified by different local cluster detection methods

Type of cluster Method Forward sortation area

High (hot spot) Getis-Ord Gi* M5C, M5E, M5G, M5M, M5R, M5S, M5T, M9R

Low (cold spot) Getis-Ord Gi* M3H

High-high Local Moran’s I M4Y, M5E, M5G, M5M, M9R

Low-low Local Moran’s I M3H

High-low Local Moran’s I M3M

Low-high Local Moran’s I M4G, M5C, M5R
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indifference” conceptualization parameter, which does
not force sharp boundaries on neighbouring FSA’s
spatial characteristics nor limit the number of neigh-
bours [52]. This conceptualization parameter considers
every FSA to be a neighbour of every other FSA, yet it
assigns a maximum weight to areas within a pre-
determined distance band, and reduces the intensity of
spatial relationships once this distance is passed.
The Getis-Ord G method was valuable for identifying

the extent of global clustering. Although Toronto is a
large city (area of approximately 630 km2), maximum
spatial clustering of FSAs with high SIRs was detected at
3.3 km, which suggests that clustering of S. Enteritidis
infections was localized to relatively small areas within
the city. This result might suggest that local clusters
were driven by small outbreaks (e.g. exposures in homes,
local daycares, or restaurants) and not by widespread

contamination of food or water supplies. Although out-
break cases are reported to iPHIS and investigated, no
local outbreaks were declared by the local public health
authorities during the study period.
The Getis-Ord Gi* and Local Moran’s I methods

identified several of the same clusters. Specifically, four
hot spots (M5E, M5G, M5M, M9R) and one cold spot
(M3H) were identified by both methods, highlighting
the robustness of our study findings. Moreover, our
study results are generally in agreement with our previ-
ous study [15], in which we evaluated area-level spatial
clustering of S. Enteritidis infection rates within three
public health units (the City of Toronto, Peel Region,
and York Region) in the Greater Toronto Area using a
spatial discrete Poisson model within a spatial scan
statistic. In that study, a single cluster of significantly
higher than expected infection rates located in the

Fig. 6 Local clusters of Salmonella Enteritidis infection rates in Toronto identified by the Getis-Ord Gi* statistic. Significant clusters of forward
sortation areas (FSAs) with high standardized incidence rates (SIRs) (Z-score≥ 1.96; p≤ 0.05). Significant clusters of FSAs with low SIRs (Z-score≥ -1.96;
p≤ 0.05). A Euclidean distance band of 3.3 km, and the zone of indifference conceptualization parameter, were used for the analysis
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south-central part (downtown) of the City of Toronto
Health Unit was identified, which included nine neigh-
bouring FSAs (M4Y, M5B, M5C, M5E, M5G, M5S,
M5T, M5V, M6J). By comparison, in the current study,
the Getis-Ord Gi* method detected five hot spots
(M5C, M5E, M5G, M5S, M5T), and the Local Moran’s
I method detected three high-high clusters (M4Y, M5E,
M5G) and one low-high cluster (M5C) in downtown
Toronto. Taken together, these findings show that these
spatial methods could be used in real-time for food-
borne disease surveillance data analysis or retrospect-
ively for prevention and control program planning.
However, it is important to understand the specifics

of each method to avoid making misleading conclu-
sions. The Getis-Ord Gi* method is ideal when there is
an assumption that infection rates cluster within the
study area, when investigators are only interested in
detecting local high- or low-rate clusters, and when

there are a limited number of neighbouring areas with
dissimilar rates. Because the Getis-Ord Gi* statistic
includes the target FSA’s rate when calculating the local
sum of rates, it is not as useful in study areas in which
there are several small areas with dissimilar rates. For
example, if the target FSA has a sufficiently high rate, it
can be designated as a hot spot even though it is sur-
rounded by FSAs with low rates. Likewise, some of its
neighbouring low-rate FSAs will also be identified as
hot spots; or high- or low-rate FSAs will not be identi-
fied at all. These issues explain why two of the hot
spots (M5C, M5R) identified by the Getis-Ord Gi*
method were identified as low-high clusters by the
Local Moran’s I method, and why an FSA with a high
SIR (M3M) and an FSA with a low SIR (M4G) were
undetected by the Getis-Ord Gi* method yet were iden-
tified as a high-low and a low-high cluster, respectively,
by the Local Moran’s I method. The latter method

Fig. 7 Local clusters of Salmonella Enteritidis infection rates in Toronto identified by the Moran’s I statistic. An Euclidean distance band of 3.3 km,
and the zone of indifference conceptualization parameter, were used for the analysis. Statistically significant at p≤ 0.05
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identifies local areas with dissimilar rates and excludes
these from the local high- or low-rate clusters, thus pre-
venting misclassification of FSAs in study areas with rela-
tively high numbers of dissimilar neighbouring areas.
This study was a hypothesis-generating study and did

not aim to identify individual-level risk factors that
might influence the spatial heterogeneity of S. Enteritidis
infection rates. However, both demographic and socio-
economic characteristics have been identified as import-
ant risk factors for salmonellosis, some of which include
eating behaviours (e.g. frequency of eating outside the
home) [6], international travel patterns of local residents
[10, 11], ethnicity (e.g. proportion of the population that
is non-Caucasian) [12], and the proportion of the popu-
lation with a high income [12, 13, 15]. Moreover, local
clusters of high S. Enteritidis infection rates could be
explained by differences in environmental contamination
of food products in local retail facilities and restaurants
[56], variations in microbial quality of food consumed
[57], or food safety practices followed by local residents
[58]. Future hypothesis-testing studies should be con-
ducted in high-rate FSAs to identify area- and individual-
level environmental, behavioural, and socioeconomic risk
factors that impact S. Enteritidis infection rates. Areas
identified as spatial outliers should be investigated using
case-control studies (e.g. high-rate areas designated as
cases and low-rate areas designated as controls) to identify
risk factors that contribute to infection rate increases.
As with every population-based ecological study, our

research has limitations, which should be considered
when interpreting our results. We recognize that ana-
lysis at a different scale might offer different results (the
“modifiable areal unit problem”) [19, 59]. However, pre-
vious studies have demonstrated that examining infec-
tion rates at small scales reduces ecological bias, and
gives optimal estimates for area-level risk factors for
foodborne diseases [19, 60, 61]. The “zoning effect” [62]
might also have occurred if neighbourhood boundaries
did not follow the area’s spatial characteristics. However,
Toronto’s FSAs are of a sufficiently small scale to high-
light and delimit neighbourhoods with distinct spatial
characteristics, and we also accounted for this issue by
using the “zone of indifference” conceptualization par-
ameter. Another limitation of our study is that passive
surveillance systems underdiagnose and underreport the
true level of infection [2, 63, 64]. Population changes
might also have occurred during the study period due to
movement of residents into and out of the study area.
However, this issue should be minor because popula-
tions generally do not change considerably in a relatively
short time frame. Lastly, exclusion of cases due to miss-
ing information might have affected our results. How-
ever, 96 % of available cases were included in our
analysis; therefore, our estimates should be reliable.

Conclusions
To the best of our knowledge, this is the first study
worldwide that investigated the spatial epidemiology of
S. Enteritidis infections in an urban setting. Salmonella
Enteritidis infection rates clustered globally at a small
distance band of 3.3 km, suggesting clustering of high
rates in small distinct areas. This finding was supported
by the local cluster analyses, where distinct FSAs with
high rates, mainly in downtown Toronto, were detected.
The robustness of our research findings were demon-
strated by linking a number of spatial data explorations
and statistical methods with GIS. Our study findings will
aid public health professionals to target hypothesis-
generating and hypothesis-testing studies in areas with
high S. Enteritidis infection rates to generate data for
public health interventions.
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