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CpG DNA analysis of bacterial STDs
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Abstract

Background: Bacterial infections in the genital tract frequently result in morbidity through a variety of inflammation
based symptoms. One component of the bacteria that may trigger host inflammatory response is their DNA. CpG
motifs in this DNA are known targets for Toll-like receptor 9 (TLR9), which is a pathogen-recognition receptors focusing
on CpG DNA. The activation of TLR9 induces the NF-κB inflammatory pathway. This study aims to provide a broad view
of the inflammatory potential of CpG DNA motifs in bacteria related to genital diseases: C. trachomatis, E. coli, N.
gonorrhoeae, G. vaginalis, H. ducreyi, L. crispatus, L. gasseri, M. hominis, M. genitalium, T. pallidum, and U. urealyticum.

Methods: Publicly available genomic sequences of the bacterial species and strains have been analyzed in silico to
produce a CpG index number. This CpG index number shows the relative inflammatory potential of the genome and
has previously been used in a study by Lundberg et al. (2003). Higher CpG index values suggest a strong CpG induced
inflammation potential during infection and vice versa.

Results: The highest observed CpG index belongs to G. vaginalis with a value of 26,2, suggesting a strong
pro-inflammatory potential when in contact with TLR9. The lowest index belongs to N. gonorrhoeae with a value
of −79,5, suggesting a strong immunoinhibitory effect on TLR9 contact. Interestingly, Lactobacilli showed a mean
CpG index value of 4,2, suggesting a weak inflammatory potential.

Discussion: Our results show varying CpG index values between bacterial species. Comparison of CpG indices
with the clinical course of several pathogens shows the CpG index helps clarify the clinical course of infection.
However, we found no links between CpG index values and either obligate pathogenicity or facultative
pathogenicity through bacterial vaginosis. Lactobacilli showed relatively low CpG indices which do suggest a
lower inflammatory potential from these bacteria.

Conclusions: Our results show varying CpG index values between bacterial species, which may help clarify the
clinical course of infection, and may help diagnosis.

Background
Bacterial Sexually Transmitted Diseases (STD) and
Genital Tract Infections (GTI) can cause high levels of
morbidity, are often accompanied by social stigma, and
are frequently widespread [1]. Symptoms can range from
slight inflammation and discharge to infertility and
death. In these diseases, inflammatory responses may
not always have the positive effect of initiating immune
responses to clear the infection [2]. Tissue scarring and
an inability to clear bacteria often occur in these
infections. Others possess ways of reducing inflammatory
response to allow for better survival in the host. The scale
of inflammatory response relies on the ability of the host

to detect the pathogen and initiate key inflammatory
pathways.
One way of initiating inflammation is through the detec-

tion of bacterial DNA [3]. Bacterial DNA has unmethy-
lated Cytosine-phosphor-Guanine (CpG) motifs, while
mammals generally have methylated CpG motifs which
are close to anti-inflammatory DNA sites [4–6]. Unmethy-
lated CpG motifs are targets for the intracellular Toll-like
receptor 9 (TLR9) [7]. This receptor is minimally, but
consistently expressed in epithelial cells of the genital tract
[8, 9]. When TLR9 binds to specific unmethylated CpG
motifs it activates the NF-κB pathway, which is a major
pathway related to immune response. Activating this path-
way initiates a chain reaction resulting in the release of
pro-inflammatory cytokines including tumor necrosis
factor-α (TNF-α), interleukin-1 (IL-1), IL-6, IL-8, IL-12,
and type 1 interferons [4, 10]. These cytokines directly
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affect the cellular and humoral immune response as well
as regulate the inflammation at the site of infection.
As inflammation is a main cause for symptoms in

bacterial STDs, we look into how the CpG properties of
these pathogens can explain differences in symptoms
and outcomes of bacterial STDs, including: Haemophilus
ducreyi, Chlamydia trachomatis, Neisseria gonorrhoeae,
Treponema pallidum, and Mycoplasma genitalium.
The first group of pathogens; C. trachomatis, N.

gonorrhoeae, and M. genitalium are STDs with similar
symptoms and course of infection. These diseases are
often asymptomatic, but can also show similar inflam-
mation based symptoms during infection. These can
range from mild cervicitis to pelvic inflammatory
disease, ectopic pregnancy, and tubapathology associated
infertility. It has been shown that activation of the
NF-κB pathway through various TLRs is a vital part of
the initial immune response to all of these diseases [11–14].
Previous study into the CpG properties of these pathogens
showed that C. trachomatis serovars C and D have an
immunostimulatory effect on the immune system while
CpG properties of N. gonorrhoeae demonstrates a strong
inhibitory potential towards TLR9 binding [12]. C.
trachomatis serovars E and the highly inflammatory L2b,
as well as various strains of M. genitalium will be analyzed
for the first time in this study.
The second group of pathogens; T. pallidum and H.

ducreyi are STDs that are characterized by ulcers and
lesions on the genitals and skin during infection. It has
been shown that NF-κB pathway activation through TLR
stimulation is vital for initiating an immune response
against T. pallidum [15, 16]. However, this has not yet
been shown for H. ducreyi infections. The cellular
response to H. ducreyi, including macrophages and poly-
morphonuclear leukocytes, does suggests that cytokine
signaling originating from NF-κB pathway activation
plays a significant role in the infection [17, 18]. CpG
properties indicating a potentially strong activation
potential of TLR9 could indicate the primary immune
response during infection with these diseases.
Bacterial vaginosis is a disease of the genital tract

commonly described as abnormal vaginal discharge, often
accompanied with a foul smell, in women of childbearing
age. There is no single causative agent of bacterial
vaginosis. Instead it is caused by an imbalance in the
natural vaginal microflora. One or more commensal
bacteria overgrow the naturally dominant Lactobacilli.
Some of the bacteria associated with bacterial vaginosis
are Gardnerella vaginalis, Mycoplasma hominis, and
Ureaplasma urealyticum. An immune response against
bacterial vaginosis appears to be lacking. There are no
polymorphonuclear leukocytes in the vaginal fluids of
women with bacterial vaginosis, however it has been
shown that inflammatory cytokines such as IL1 and TNF-α

are present [19]. This suggests the imbalance of bacteria is
recognized by the immune system, but an effective
immune response is inhibited. Host response mechanisms
to bacterial vaginosis appear to largely revolve around the
activation of the NF-κB pathway [20–22].
Unlike these pathogens, commensal bacteria are

naturally found in the host and generally cause no adverse
effects. In this study we include the commensal bacteria
Lactobacillus crispatus, Lactobacillus gasseri, and an
Escherichia coli strain linked to asymptomatic growth in
the urinary tract. L. crispatus is a beneficial vaginal bacter-
ium whose decrease is characteristic of bacterial vaginosis.
The vaginal bacterium L. gasseri is also found to protect
the vagina from infections. Lactobacilli acidify the vagina
and produce hydrogen peroxide which reacts with myelo-
peroxidase to form reactive molecules toxic to pathogens.
Women without vaginal lactobacilli have an increased risk
of HIV and gonorrhoeae [23, 24]. It has been shown that
Lactobaccilli may or may not induce an immune response
through the NF-κB pathway on a species dependent basis
[25]. E. coli is a bacterium generally linked to intestinal
inflammation and urinal tract infections. However, E. coli
can also occur asymptomatically in both the intestines
and the urinal tract [26]. The immunopathogenesis of
E. coli has been clearly linked to the NF-κB pathway,
primarily through activation of TLR4 [27, 28]. However
this has only been shown for pathogenic strains.
In this study we aim to provide a broader view of the

inflammatory properties of bacterial genomes in diseases
related to the vaginal or genital tract. These genomes are
analyzed in silico, to assess the inflammatory potential of
CpG motifs in these pathogens, and to predict the role
TLR9 plays in the respective host-bacterium interactions
and whether strain differences affect this role.

Methods
Publicly available bacterial genome data has been used
for all analyses in this study. NCBI genome databases
have been used to obtain the genomes required for
analysis. Genomes most focused on by the scientific
community that did not have specific uncommon charac-
teristics were chosen for the analysis. Genomes were
chosen based on frequency of inclusion in research and
lack of traits differentiating them from the usual organ-
ism. CpG analysis per genome has been done using
previously described genome analysis methods [29].
These methods allowed determination of the amount and
build of CpG motifs in a genome, predicted number of
CpG motifs when looking at the genomes size, and GC
content. The analyzed strains in this study comprise
strains of the bacteria: C. trachomatis, E. coli, G. vaginalis,
H. ducreyi, L. crispatus, L. gasseri, M. genitalium, M.
hominis, N. gonorrhoeae, T. pallidum, and U. urealyticum
as shown in Table 1.
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In silico analyses
Size and GC content of the analyzed genomes were gath-
ered from the NCBI genome databases. The average
amount of CpG hexameres (NNCGNN) per kb of genome
was calculated from the total amount of CpG hexameres
per genome. CpG hexameres found per genome were
compared to the amount of CpG hexameres expected
based on the size and the GC content of the genome. We
determined the frequency of inflammation stimulatory or
inhibitory CpG DNA motifs in their respective genomes
[12, 29, 30]. As definition for stimulatory or inhibitory
motifs we used published consensus motifs derived from
E. coli sequences [30]. These comprise inhibitory hexamere
motifs NCCGNN and NNCGRN, and stimulatory hexam-
ere motifs RRCGYY. From the difference between these
frequencies we produced CpG indices showing the CpG-
based immunostimulatory or immunoinhibitory potential
of the disease as has previously been described [31, 32].

Ethics statement
The authors declare that no human material was used
during this study.

Results
Table 2 shows the CpG indices for the examined micro-
organisms. An index above zero predicts immunostimula-
tory properties of the DNA and an index below zero
predicts immunoinhibitory properties. The indices do not
predict a set amount of inflammation. Larger indices indi-
cate a more potent inflammatory or inhibitory potential.
Amount of inflammation belonging to index values can be
predicted by comparing scores and in vitro or in vivo
responses.
G. vaginalis has the highest index with one strain

reaching a value of 26.2, and a mean value of 23.9. Both
the included E. coli strain and T. pallidum also appear
to have larger than average mean CpG values, with
mean values of 21.1 and 17.7, respectively. The lowest
index belongs to N. gonorrhoeae with one strain having
a CpG value of −79.5 and a mean CpG value of −77.1.
N. gonorrhoeae was the only bacteria showing a negative
CpG value in the analysis.
A large cluster of genomes were found to have relatively

low mean CpG values of <10. The mean CpG value of
C. trachomatis strains that were not L2b was 3.1, with the

Table 1 Micro-organism names, strains and relevant NCBI references to sequences

Bacteria Disease Strain NCBI reference sequence

H. ducreyi Chancroid HP35000 NC_017456.1

C. trachomatis Chlamydia E/11023 NC_017431.1

C. trachomatis Chlamydia E/150 NC_017439.1

C. trachomatis Chlamydia E/SW3 NC_017952.1

C. trachomatis LGV L2b/UCH-1 NC_010280.2

N. gonorrhoeae Gonorrhea FA 1090 NC_002946.2

N. gonorrhoeae Gonorrhea NCCP11945 NC_011035.1

N. gonorrhoeae Gonorrhea TCDC-NG08107 NC_017511.1

T. pallidum Syphilis DAL-1 NC_016844.1

T. pallidum Syphilis SS14 NC_010741.1

T. pallidum Syphilis Chicago NC_017268.1

T. pallidum Syphilis Mexico A NC_018722.1

M. genitalium Non-gonococcal urethritis G37 NC_017456.1

M. genitalium Non-gonococcal urethritis M2288 NC_018498.1

M. genitalium Non-gonococcal urethritis M2321 NC_018495.1

M. genitalium Non-gonococcal urethritis M6282 NC_018496.1

M. genitalium Non-gonococcal urethritis M6320 NC_018497.1

G. vaginalis Bacterial vaginosis 409-05 NC_013721.1

G. vaginalis Bacterial vaginosis ATCC 14019 NC_014644.1

G. vaginalis Bacterial vaginosis HMP 9231 NC_017456.1

M. hominis Bacterial vaginosis ATCC 23144 NC_013511.1

U. urealyticum Bacterial vaginosis ATCC 33699 NC_011374.1

E. coli - ABU 83972 NC_017631.1

L. crispatus - ST1 NC_014106.1

L. gasseri - ATCC 33323 NC_008530.1
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included L2b strain showing a slightly lower CpG value of
2.9. H. ducreyi showed a CpG value of 6.6. The two
included Mycoplasma species, genitalium and hominis, were
found to have mean CpG values of 1.5 and 3.8, respectively.
The single strain of U. urealyticum was found to have a
CpG value of 8.4. Lastly, the Lactobacilli were found to have
index values of 3.7 and 4.6. Figure 1 shows the mean CpG
index values for every pathogen on a CpG axis.

Discussion
The immune response to bacterial STDs is primarily ini-
tiated through activation of TLRs. TLR9 is likely to be a
big factor due to activation of the receptor by bacterial
DNA CpG motifs. This study has produced an overview

of potential TLR9 activation through inflammation
stimulating or inhibiting CpG motifs related to a variety
of bacterial STDs, bacteria linked to bacterial vaginosis,
and commensal bacteria found in the genital tract.
The group of bacterial STDs with symptoms largely

related to symptoms induced by inflammation in the
host was a likely target to show high potential TLR9 ac-
tivation through the CpG indices. Surprisingly, C. tra-
chomatis, N. gonorrhoeae, and M.genitalium do not
show any indices higher than 3.1. Although there is a
relatively low CpG index for both C. trachomatis sero-
vars E and L2b, cervical and colonic epithelial cells in-
fected with C. trachomatis do secrete pro-inflammatory
cytokines in relatively large amounts [33]. Additionally,

Table 2 Results of In silico CpG analyses

Genome CpG hexamere deviation from expected values in %a

Bacteria Strain Size (Mb) G + C% CpG per kbb Total CpGc Stimulatoryd Inhibitorye CpG indexf

H. ducreyi HP35000 1.7 38.2 41.0 112.2 124.8 110.4 6.6

C. trachomatis E/11023 1.04 41.3 33.8 79.3 90.7 79.1 3.1

C. trachomatis E/150 1.04 41.3 33.8 79.3 90.8 79.1 3.1

C. trachomatis E/SW3 1.05 41.3 33.8 79.3 90.8 79.1 3.1

C. trachomatis L2b/UCH-1 1.04 41.3 33.9 79.4 86.7 76.1 2.9

N. gonorrhoeae FA 1090 2.15 52.7 92.2 132.9 83.9 143.5 −73.1

N. gonorrhoeae NCCP11945 2.24 52.4 90.7 132.3 80.3 145.8 −78.6

N. gonorrhoeae TCDC-NG08107 2.19 52.5 91.7 132.8 80.5 145.8 −79.5

T. pallidum Dal-1 1.14 52.8 75.1 107.8 107.5 85.7 17.7

T. pallidum SS14 1.14 52.8 75.0 107.7 107.5 85.6 17.7

T. pallidum Chicago 1.14 52.8 75.1 107.8 107.6 85.7 17.7

T. pallidum Mexico 1.14 52.8 75.1 107.8 107.5 85.7 17.7

M. genitalium G37 0.58 31.7 9.7 38.8 74.9 35.0 1.5

M. genitalium M2288 0.58 31.7 9.8 38.9 75.0 35.2 1.5

M. genitalium M2321 0.58 31.7 9.8 39.1 75.3 35.5 1.5

M. genitalium M6282 0.58 31.7 9.8 39.1 74.4 35.5 1.5

M. genitalium M6320 0.58 31.7 9.8 38.9 75.0 35.3 1.5

G. vaginalis 409-05 1.62 42.0 48.3 109.3 125.5 87.3 20.2

G. vaginalis ATCC 14019 1.67 41.4 45.0 105.2 138.7 83.3 26.2

G. vaginalis HMP 9231 1.73 41.2 44.4 104.7 137.3 83.1 25.2

M. hominis ATCC 23144 0.67 27.1 12.8 69.4 113.1 70.0 3.8

U. urealyticum ATCC 33699 0.87 25.8 13.8 82.9 138.2 64.3 8.4

E. coli ABU 83972 5.13 50.6 49.2 111.7 146.6 108.2 21.1

L. crispatus ST1 2.04 36.9 27.5 80.8 96.6 80.0 3.7

L. gasseri ATCC 33323 1.89 35.3 23.4 75.4 99.0 73.0 4.6
aDeviations in amounts of CpG hexameres compared to the expected amount based on GC content
bCpG hexameres occurring per 1 kb of DNA
cTotal number of CpG hexameres compared to the expected amount
dNumber of stimulatory CpG hexameres (RRCGYY) compared to expected amount
eNumber of inhibitory CpG hexameres (NCCGNN and NNCGRN) compared to the expected amount
fIndex calculated from the difference between stimulatory deviation and inhibitory deviation indices, multiplied by the total CpG index, normalized by multiplying
with the amount of CpG hexameres per 1 kb
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IL-1α secreted by endocervical epithelial cells was previ-
ously found to amplify the inflammatory response by
stimulating additional cytokine production without acti-
vating more TLRs [34]. A study by Ouburg et al. shows
that TLR9 does not influence the susceptibility to acute
Chlamydia infection [12]. This information plus the
relatively low stimulatory CpG index of 3.1 of C. tracho-
matis may indicate that it elicits an immune response
via another route than TLR9. TLR4 is a likely alternative
candidate, as it recognizes chlamydial LPS via its core-
ceptor CD14 [35]. Similarly, the highly inflammatory
strain L2b/UHC-1 shows a comparable CpG index also
suggesting that TLR9 and CpG DNA are not vital factors
in inflammation during C. trachomatis infection.
Similarly to C. trachomatis, symptoms during infection

with N. gonorrhoeae are also largely based on inflamma-
tion. However it was found to have an inhibitory CpG
index of −73.1, similar to findings in a study by Ouburg
et al. [12]. It has been described that N. gonorrhoeae
uses several strategies to avoid the immune system. The
CpG index of −73.1 of N. gonorrhoeae may explain that
this pathogen suppresses Th1 and Th2 responses by re-
ducing binding with TLR9 and activation of NF-κB [36].
This reduces the secretion of IL-4 and IL-12 that are
needed to activate the Th1 and Th2 responses. Reports
show that shortly after infection, CD4+ T cell and CD8+
T cell levels declined [37]. This may also explain why N.
gonorrhoeae demonstrates an asymptomatic clinical
course in most cases [38]. Based on these studies, it is
likely that when inflammatory symptoms arise during N.
gonorrhoeae infection, it is likely through activation of
the immune response without activation of TLR9.
M. genitalium was found to have a minimal CpG index

of only 1.5. Comparing this with the minor CpG index for
M. hominis of 3.8 and a higher CpG index of 8.4 for the

closely related U. urealyticum some similarities can be
seen. The values suggest minor inflammatory properties
of the micro-organisms’ DNA and significance of TLR9 in
the inflammatory response to these organisms. No re-
search has been done on the roles of either CpG or the
TLR9 pathway in the bacteria. However, a previous study
did indicate TLR1 and TLR2 to induce the NF-κB pathway
in M. genitalium [14]. Therefore, we suggest that activa-
tion of the immune response is largely initiated through
these pathways instead.
The bacterial STDs H. ducreyi and T. pallidum, both

characterized by the formation of lesions or ulcers as
symptoms, showed CpG indices of 6.6 and 17.7, respect-
ively. During H. ducreyi infections, increased secretion
of TLR9 related pro-inflammatory cytokines including
IL-12 and IFNγ would activate and increase differenti-
ation of Th1 cells. A Th1 cellular immune response is
needed for clearance of H. ducreyi [39]. The effect of
some point mutations in TLR9 on activation of the cel-
lular immune response was shown by Sanders et al.,
showing a protective effect of TLR9 + 2848 in a study
targeting bacterial meningitis [31]. Unpublished data
from our group showed a protective association for
TLR9 + 2848*G and a significant risk enhancing effect
for TLR9 -1237*T plus TLR9 + 2848*A during H. ducreyi
infections (manuscript in preparation). This indicates
TLR9 activation through CpG motifs in H. ducreyi DNA
is vital for a proper immune response to this infection
Similarly during T. pallidum infections a cellular im-

mune response is vital for clearance of the infection [40].
With pro-inflammatory cytokines being found inside le-
sions, indicating activation of the NF-κB pathway plays an
important role in the initial immune response as well as
activation of the cellular response. The relatively high
CpG index of 17.7 found for T. pallidum indicates that

Fig 1 Scale bar showing the position of the mean CpG values per pathogen
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TLR9 can be the primary inducer of the NF-κB pathway
during infection with T. pallidum.
G. vaginalis was found to have the highest mean CpG

index of 25.7, suggesting that it has DNA with signifi-
cant inflammatory properties. However, bacterial vagin-
osis because of G. vaginalis overgrowth only produces
mild inflammatory signs. G. vaginalis has previously
been found to create a biofilm and from there induce
controlled inflammation, using the host’s immune re-
sponse to further its infection [41]. Additionally, Ghione
et al. has found that a Th2 response activating B-cells
produces antibodies specific to G. vaginalis influencing
the infection but not clearing it [42]. We suggest that
the high CpG index found in this study can be explained
as part of the way G. vaginalis gains advantage from the
inflammation while inside a biofilm.
The commensal bacteria L. gasseri and L. crispatus show

a stimulatory effect on the immune system. In contrast to
our findings, a study by Ghadimi et al. describes that the
binding of the commensal bacteria L. rhamnosus to TLR9
elicits an intracellular signaling cascade in a manner that
reduces the expression of IL-8. TNF-α is being attenuated
by reducing IkBα and p38 phosphorylation, which are
downstream signaling proteins in the NF-κB pathway [43].
Additionally, recent findings suggest that there is a species
specific effect on the inflammatory response of the host to
Lactobaccillus spp. [25]. For example L. iners was found to
induce pathogen recognition receptor activity and expres-
sion of pro-inflammatory cytokines. Conversely, L. crispa-
tus was found to not exhibit these effects. This suggests a
potential disparity between different Lactobaccillus species
that may explain the different findings. Indeed, one study
found that cytokine production differed between Lactoba-
cillus species, and that this cytokine response is primarily
due to activation of TLR9 [44]. This may indicate that the
relatively small difference between the two species exam-
ined here is a fluctuation that apparently has an in vivo ef-
fect on the production of TLR9 related cytokines.
In contrast to the relatively low CpG indices of the ex-

amined Lactobacilli, the examined E. coli strain showed a
high immunostimulatory CpG index of 21.1. Although
studies into commensal E. coli strains have primarily fo-
cused on TLR4 and TLR5, one study has shown cytokine
expression profiles during stimulation of TLR9 with com-
mensal E. coli DNA linked to NF-κB activation [45–47]. It
is strange then, that the presence of the E. coli strain does
not lead to symptoms that normally occur during E. coli
pathogenic infections. Previous analysis of the E. coli ABU
83972 genome found that the innate immune response of
the host is modified during infection with this bacterium
[26]. Specifically the IL-1 and IL-6 signaling pathways are
affected. The authors suggest that the bacteria uses this
modified immune response to adapt on a host-specific
basis, to a point where both host and bacterium can

benefit from the commensal growth. Therefore, in this
specific strain of E. coli the immunostimulatory potential
of the high CpG index is successfully circumvented.
Comparing our results to previous studies into CpG

indices of microbial organisms allows us to put the
CpG indices into context [31, 32]. Lundberg et al. ex-
amined viral DNA to find CpG indices up to 148.7 for
Bovine Herpesvirus-1 and a low of −9.4 for Epstein
Barr virus. They suggest that viral DNA characteristics
make it hard to compare CpG indices of these viruses,
and mention that the results may have been affected by
the CpG motifs used for analysis, as they were deter-
mined from bacterial DNA. Nevertheless, they showed
a predictive value in the CpG index as the negative re-
sults relate to low inflammation in clinical infections
and relatively high results relate to strong inflammatory
responses in vivo [32]. The study of Sanders et al. fo-
cused on bacterial meningitis and can be better related
to this study. Interestingly, their analyses of N. mengiti-
dis resulted in a CpG index of −106.8, suggesting a very
strong immunoinhibitory relation similar to the one
found in this study for N. gonorrhoeae. H. ducreyi has a
CpG index of 6.6, only 0.6 points removed from H. influen-
zea with an index of 7.2. Sanders et al. relate even the weak
CpG indices to clinical inflammation during their respective
diseases [31].
Looking at the clinical pictures of pathogens included

in this study, the bacteria H. ducreyi and T. pallidum
cause visible soars or ulcers during their clinical course
while C. trachomatis, N. gonorrhoeae, and M. genita-
lium have the shared characteristic of causing tubal
pathology, which in all cases can lead to infertility and
ectopic pregnancy. The ulcer and lesion producing
group has CpG indices that are overall higher than the
group of pathogens related to tubapathology, even
though the clinical course of the last group of diseases
shows clear inflammation in the host. However, previ-
ous studies have shown that pathogens related to tuba-
pathology are detected more accurately through other
pathways. The difference in CpG index values in this group
may be explained by the fact that C. trachomatis is intracel-
lular, and N. gonorrhoeae extracellular, thus the two are ex-
posed to different immunological factors. This has already
been shown for M. genitalium, which is detected through
TLR1 and TLR2 instead [14]. There are also two non-
pathogenic groups of bacteria studied here. The first is the
commensal group including L. crispatus, L. gasseri, and an
asymptomatic E. coli strain. The second is the bacterial
vaginosis group consisting of G. vaginalis, M. hominis, and
U. urealyticum. These may show symptoms like increased
vaginal discharge, change of smell, and itchiness [48]. These
two groups both show widely varying positive CpG indices
depending on the examined organism. This indicates that
TLR9 initiation potential is likely highly specific to an
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organism, and related to multiple factors such as inter-
action with the immune system. Additionally, it suggests
that CpG/TLR9 interaction alone cannot account for all
specific inflammatory symptoms. A previous study has
shown that bacterial CpG specifically induces the proin-
flammatory cytokines IL-6, IL-12, and Interferon γ [49].
However, the symptoms created during infection with the
included organisms are formed by a complex system in-
cluding both host and bacterial factors for which the CpG
index value reflects the intensity of the initial inflammation.
Including all the studied bacteria into one biological

model is difficult, as many of these bacteria have differ-
ent ways of avoiding or interacting with the immune sys-
tem. However, the comparison of CpG indices with
clinical outcomes of the diseases showed that there are
similar characteristics between some bacteria. As was
previously mentioned, positive CpG indices result in
stimulation of TLR9, which activates the TLR9 related
NF-κB pathway. At the end of this pathway, upregulated
transcription of NF-κB targeted genes causes more in-
flammatory cytokines such as IL-1 and TNF-α to be re-
leased. We suggest that a relatively low or negative CpG
index still allows the DNA of the bacteria to bind. How-
ever, this DNA then does not stimulate TLR9, or does
not stimulate TLR9 as strongly into activating the NF-κB
pathway. Conversely, a positive CpG index means the DNA
binds to TLR9 more easily or activates the NF-κB pathway
in a stronger manner.
Reflecting back on this study some strengths become

clear. The methods used in this study have previously
been shown to have significant predictive value. This
study is also the first to look at CpG DNA and its effect
on inflammation for such a large group of relevant bac-
teria in the genital tract. However, some limitations do
apply. Though the predictions have previously been
shown to have significant value, in vitro study is needed
for verification. Also this study has only looked at se-
quenced strains. Therefore some results may not be in
line with what can be seen in infections with current
wild type strains in in vivo infections. Additionally, the
used CpG sequences were all derived from studies on
E. coli. There is no study into whether these sequences
act like stimulatory and inhibitory motifs for all the
bacteria studied here or if there are any additional rele-
vant sequences.
This study has indicated inflammatory potential in

bacterial STDs through analysis of the bacterial ge-
nomes. If this result can be corroborated in vitro it can
clarify the immunopathogenesis for the bacteria studied
here. In the future this data can be used to specifically
focus research into inflammation during infections with
the studied bacteria. Additionally, results found in this
study can be used to compare indices of other micro-
organisms studied using the same methods.

Conclusion
In conclusion our results show varying CpG index values
between bacterial species. Comparison of CpG indices
with the clinical course of several pathogens shows the
CpG index helps clarify the clinical course of infection.
However, we found no links between CpG index values
and either obligate pathogenicity or facultative patho-
genicity through bacterial vaginosis. Lactobacilli showed
relatively low CpG indices which do suggest a lower in-
flammatory potential from these bacteria.
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