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Abstract

Background: Fusarium species are among the most common fungi present in the environment and some species
have emerged as major opportunistic fungal infection in human. However, in immunocompromised hosts they can
be virulent pathogens and can cause death. The pathogenesis of this infection relies on three factors: colonization,
tissue damage, and immunosuppression. A novel Fusarium species is reported for the first time from keratitis in an
agriculture worker who acquired the infection from plant material of maize. Maize plants are the natural host of this
fungus where it causes stalk rot and seeding malformation under temperate and humid climatic conditions. The
clinical manifestation, microbiological morphology, physiological features and molecular data are described.

Methods: Diagnosis was established by using polymerase chain reaction of fungal DNA followed by sequencing
portions of translation elongation factor 1 alpha (TEF1 α) and beta-tubulin (BT2) genes. Susceptibility profiles of this
fungus were evaluated using CLSI broth microdilution method.

Results: The analyses of these two genes sequences support a novel opportunist with the designation Fusarium
temperatum. Phylogenetic analyses showed that the reported clinical isolate was nested within the Fusarium
fujikuroi species complex. Antifungal susceptibility testing demonstrated that the fungus had low MICs of
micafungin (0.031 μg/ml), posaconazole (0.25 μg/ml) and amphotericin B (0.5 μg/ml).

Conclusion: The present case extends the significance of the genus Fusarium as agents of keratitis and underscores
the utility of molecular verification of these emerging fungi in the human host.
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Background
Fungal keratitis was first reported by Theodor Leber in
1879 in a farmer who had an eye trauma due to blades
used for cutting wheat. Today the infection is known to
occur worldwide, particularly in warmer climates, and is
caused by a large diversity of fungal species. In temperate
regions, fungal keratitis is most commonly caused by
Fusarium species [1]. Under (sub) tropical conditions,
filamentous fungi are prevalent as causes of infection.
Particularly Fusarium and Aspergillus predominate, with
up to one-third of cases of traumatic keratitis [2,3]. On a

global scale, fusariosis is one of the most common causes
of fungal corneal ulcers [4-6].
Keratitis caused by Fusarium is a serious infection and

occurs especially among farmers and workers with agri-
cultural occupations. Corneal abrasions occur commonly
during harvest, when labor handling decayed and dried
plant products is a major risk factor for ocular trauma
[7-9]. Fungi are one of the possible causes of keratitis and
are differentially susceptible to commonly used antifungals.
Therefore misdiagnosis potentially leads to visual loss
and devastating ocular damage if the infection remains
untreated [10].
Fusarium is a genus of more than 200 species of

molds that are widely distributed in soil, on terrestrial
plants, in plant debris and on other organic substrates.
Numerous agents of diseases of plants and cold-
blooded animals are known [11], but only a few have
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been recognized as causing infections in humans
[12]. Fusarium infections in immunocompetent hosts
are mostly associated with superficial mycosis such
as onychomycosis and keratitis; the first reported
case of a Fusarium eye infection dates back to 1958
[13]. Recently, deep and systemic infections are ob-
served in immunocompromised patients, with in-
creasing frequency [14].
Here we present an extraordinary case of keratitis in a

worker who acquired the infection from plant material
of maize. The case is worth reporting not only by its
rareness but also its unusual infection in a human. In
the present report, this case was initially ascribed to
Fusarium oxysporum based on the morphological char-
acters. Since morphological studies are insufficient to
determine the correct taxonomic position at the species
level in Fusarium, a multilocus DNA sequence study
followed by phylogenetic analysis was applied to iden-
tify the agent of this case. As a result, Fusarium temper-
atum is reported as a new causative agent of human
keratitis.

Case report
An agriculture worker presented with a corneal ulcer-
ation. The disorder had started 12 days earlier when
patient suffered from a trauma in the eye with maize
plant materials during harvest. Before presenting to the
hospital, the patient was seen by a local practitioner
who prescribed neomycin, polymyxin B, phenylephrine
and dexamethasone eye drops for eight days, supposing
that a bacterial infection was concerned. On presenta-
tion, visual acuity was 20/50 by using Snellen chart. Slit-
lamp examination of the right eye showed a 12 mm
white-yellowish central corneal epithelial defect with ir-
regular and raised edges, along with intense hyperemia of
the conjunctiva, photophobia and pain (Figure 1A).
Corneal scrapings for direct microscopic examin-

ation with 10% potassium hydroxide demonstrated
multiple irregular, septate, hyaline hyphae (Figure 1A).
Samples were inoculated onto Sabouraud’s glucose
agar (SGA) plates and incubated for 5 days at 28°C.
Fluffy, pink-violet colonies rapidly developed, which
microscopically revealed abundant sickle-shaped, sept-
ate macroconidia (4–5 μm in length) in addition to
microconidia (2–3 μm in length). On the basis of cul-
ture and microscopy, the fungus was provisionally
identified as F. oxysporum.
Antifungal treatment was initiated with topical natamycin

5% (Laboratorios Grin, Distrito Federal, Mexico) ophthal-
mic solution, as follows: 2 drops each hour during eight
days, then one drop each 4 hours, in addition to itracona-
zole 200 mg daily. Noteworthy improvement was achieved,
and the patient did not return for follow up visits.

Methods
Ethics statement
The study protocol was approved by the Scientific and
Ethics Committees of the Hospital General de México
(approval number DIC/12/102/3/23) and was performed
in accordance with the ethical principles described in the
1964 Declaration of Helsinki. Informed written consent
was obtained from the patient prior to their inclusion in
the study.

Clinical specimen
Corneal scrapings were collected for microbiological studies
from a patient seen in Hospital General de México, O.D,
Mexico City, Mexico.

Fungal isolation
Corneal scrapings were inoculated onto Sabouraud’s
glucose agar (SGA) plates and incubated for 5 days at
28°C. Subcultures of the causative agent were deposited
in the reference collection of the CBS-KNAW Fungal
Biodiversity Centre, Utrecht, The Netherlands under
accession number CBS 135540, where further identifi-
cation was undertaken.

Morphology
The fungus grew on culture plates of malt extract ager
(MEA; Oxoid, U.K.), oatmeal agar (OA; home-made at
CBS), potato dextrose agar (PDA; Oxoid), synthetic nu-
trient agar (SNA) [15], and carnation leaf agar (CLA)
[16]. Culture plates were incubated in the dark for one
week at 25°C. Microscopic mounts in lactic acid with
cotton blue were made from cultures grown on a PDA
plate. Slide cultures were observed after 5 days of incu-
bation at 25°C. Slides were examined and measured
with a light microscope (Nikon Eclipse 80i), and pic-
tures were taken using a Nikon digital-sight DS-5 M
camera attached to the microscope.

Physiology
Cardinal growth temperatures were determined on PDA
with isolates incubated in the dark for one week at 25,
27, 30, 33, 35, 36, 37 and 40°C.

DNA extraction
DNA was extracted following the Quick CTAB protocol.
1–10 mm3 fungal material was transferred to two mL
screw-capped tubes filled with 490 μL CTAB-buffer 2 × and
6–10 acid-washed glass beads. 10 μL Proteinase K were
added and mixed thoroughly on a MoBio vortex for
10 min. 500 μL Chloroform: isoamylalcohol (24:1) was
added and shaken for 2 min after incubation for 60 min at
60°C. Tubes were centrifuged for 10 min at 14,000 r.p.m.
The supernatant was collected in a new Eppendorf tube.
To ~400 μL DNA sample 2/3 vol (~270 μL) of ice-cold
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Figure 1 Morphological description of Fusarium temperatum. (A) Slit lamp photograph showing infected cornea involving regions of sclera;
(B) KOH mount of the scraping material showing fungal hyaline and nonseptate hyphae (magnification, ×40); (C) Sporodochia present in
yellowish orange on CLA; (D) Growth of the isolate F. temperatum on OA, agar pigmentation ranges from colorless to dark purple on; reverse
pigmentations in light pink; (E) Growth of isolates on PDA at 25°C; (F) In situ conidiophores with false heads; (G) Microconidia on CLA; (H-I)
Macroconida; (J) Coild hyphae; (K-L) Monophialidic and polyphialidic conidiogenous cells. All scale bars, 10 μm.

Al-Hatmi et al. BMC Infectious Diseases 2014, 14:588 Page 3 of 9
http://www.biomedcentral.com/1471-2334/14/588



iso-propanol was added and centrifuged again at 14,000 r.p.
m. for 10 min and the upper layer was dissolved in 1 mL
ice-cold 70% ethanol. Tubes were centrifuged again at
14,000 r.p.m. for 2 min, air-dried and re-suspended in
50 μL TE-buffer. The quality of genomic DNA was verified
by running 2–3 μL on a 0.8% agarose gel. DNA was quanti-
fied with a NanoDrop 2000 spectrophotometer (Thermo
Fisher, Wilmington, U.S.A.). Samples were stored at −20°C
until use.

DNA amplification and sequencing
Two gene regions were amplified directly from the genomic
DNA for multilocus sequence typing. The primer pairs for
the genes were EF1 and EF2 [17], BT-2a [18] and BT-2b
[19] (primers listed in Table 1). PCR reaction mixture
(12.5 μL final vol) contained 10 × PCR buffer 1.25 μL, water
7.5 μL, dNTP mix (2.5 mM) 0.5 μL, 0.25 μL of each primer
(10 pmol), Taq polymerase (5 U/μL) 0.05 μL, DMSO
0.7 μL, and template DNA (100 ng/μL) 1 μL. Amplifica-
tion was performed in an ABI PRISM 2720 (Applied
Biosystems, Foster City, U.S.A.) thermocycler as follows:
95°C for 4 min, followed by 35 cycles consisting of 95°C
for 45 sec, 52°C for 30 sec and 72°C for 2 min, and a delay
at 72°C for 7 min. Annealing temperature was changed to
58°C for the BT2 gene. PCR products were visualized by
electrophoresis on a 1% (w/v) agarose gel. Amplicons were
purified using exoSAP. Both strands of the PCR fragments
were sequenced with the above-mentioned primers. The
ABI PrismH Big DyeTM Terminator v. 3.0 Ready Reaction
Cycle Sequencing Kit (Applied Biosystems) was used for
sequencing PCR. Sequences were determined with an ABI
PRISM™ 3,100 Genetic Analyzer (Applied Biosystems).
Sequencing PCR was performed as follows: 1 min at 95°C,
followed by 30 cycles consisting of 10 sec at 95°C, 5 sec at
50°C and 2 min 60°C. Reactions were purified with Sepha-
dex G-50 fine (GE Healthcare Bio-Sciences, Uppsala,
Sweden) and sequencing was done on an ABI 3730XL
automatic sequencer (Applied Biosystems) with ABI
PRISM BigDyeTM terminator cycle sequencing kit.

Phylogenetic analyses
A consensus sequence was computed from the forward
and reverse sequences with SeqMan from the Lasergene
package (DNAstar, Madison, WI). Thirty eight sequences
of species of the Fusarium fujikuroi species complex (FFSC)

were included and retrieved from GenBank, including two
sequences of the F. oxysporum species complex (FOSC) for
TEF1 α and BT2 markers as an outgroup (Additional file 1:
Table S1). The sequences were aligned using MAFFT v.
7.127 (http://mafft.cbrc.jp), followed by manual adjust-
ments with MEGA v. 5.2. A combined alignment was con-
structed for both TEF1 α and BT2 markers. The best-fit
model of evolution was determined by ModelTest v. 0.1.1.
Bayesian analysis was performed with MrBayes v. 3.1.2.
Four MCMC chains were run simultaneously for 1 × 107

generations. Bayesian phylogenetic tree was constructed.
Sequences of CBS 135540 were deposited in GenBank
under the accession numbers [GenBank:KF956084] for
TEF-1α and [GenBank:KF956080] for BT2 (Additional file 1:
Table S1).

Antifungal susceptibility
Antifungal susceptibility testing (AFST) of CBS 135540
was performed by the CLSI broth microdilution method,
M38-A2 [20]. The antifungals tested were amphotericin B
(Sigma, St. Louis, MO), fluconazole (Pfizer, Groton, CT),
itraconazole (Janssen Pharmaceutica, Tilburg Netherlands),
voriconazole (Pfizer), posaconazole (Merck, Whitehouse
Station, NJ), isavuconazole (Basilea Pharmaceutica, Basel,
Switzerland), micafungin (Astellas, Ibaraki, Japan), anidula-
fungin (Pfizer) and natamycin (DSM, Delft, the Netherlands).
For the broth microdilution test, RPMI 1640 medium with
glutamine without bicarbonate (Sigma) buffered to pH 7
with 0.165 mol/liter 3-N-morpholinepropanesulfonic acid
(Sigma) was used. Isolates were grown on PDA for 5 days
and incubated at 25°C and for sporulation. Final inoculum
was adjusted to a density of 1.0 to 5.0 × 104 hyphal frag-
ments/spores per ml by adjusting an optical density of 0.13
to 0.18 at 530 nm using a spectrophotometer. Drug-free and
mold-free controls were included, and microtiter plates were
incubated at 35°C for 72 to 96 h. Three reference strains.
Paecilomyces variotii ATCC 22319, Candida krusei ATCC
6258 and Candida parapsilosis ATCC 22019 were included
as quality controls. The MIC endpoints were read visually,
which, for azoles and amphotericin B, were defined as the
lowest concentration at which there was 100% inhibition of
growth compared with the drug-free control wells. For echi-
nocandins, minimal effective concentrations (MEC) were
defined as the lowest concentration of drug that led to the
growth of small, rounded, and compact hyphal forms.

Table 1 PCR primers used for amplification

Locus Primers primer sequence (5′-3′) Amplicon size, bp Ref

TEF1α EF1 ATGGGTAAGGARGACAAGAC 600 [17]

EF2 GG ARGTACCAGTSATCATGTT [17]

BT2 BT-2a GGTAACCAAATCGGTGCTGCTT 500 [18]

BT-2b TTACGTCCCTGCCCTTTGTA [19]
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Results
Morphology
The clinical isolates grew and sporulated well on PDA,
OA, CLA and SNA at 25, 27, 30 and 33°C and growth
was apparent within 2 days on all agar plates. Yellowish
orange sporodochia were produced on CLA (Figure 1C).
Agar pigmentation ranged from colorless to dark purple
on OA; pigmentation of colony reverse was in shades of
light pink (Figure 1D). Aerial mycelium was cottony, ini-
tially white, becoming pinkish white, turning violet in
the colony center in a later stage. Subsequently, colonies
spread rapidly, filling the culture plate within 1 week
(Figure 1E). Conidiophores in the aerial mycelium were
erect, branched, terminating in 1–3 phialides (Figure 1F).
On SNA with filter paper, colonies were colorless, later
changing the color of the filter papers to pale pink. Micro-
conidia were oval, abundant, grouped in masses; hyaline
and non-septate (Figure 1G). Macroconidia hyaline, with
3–6 (mostly 4–5) septa, slender, slightly falcate, with a
beaked, curved apical cell and a foot-like basal cell with a
thin cell wall (Figure 1H, I). Polyphialides and monophia-
lides were observed (Figure 1K, L). Chlamydospores were
not found over 10 days of incubation.

Physiology
Cardinal growth temperatures tests showed optimal devel-
opment at 25 − 27°C (Figure 2), with a maximum growth
temperature at 36°C. No growth was observed at 37 and
40°C. 37°C proved to be fungistatic, but regrowth was
observed after incubation at 25°C. Colonies on PDA
attained a diameter of approximately 65 mm, and those
on OA covered the entire agar surface after 5 days at 25°
C. Colonies attained a diameter of about 68 mm at 27°C
in the dark on PDA. Colonies on PDA plates incubated at
33°C showed slow growth and attained a diameter of
about 32 mm after 5 days.

Phylogeny
BT2 and TEF-1α partial genes (NCBI JX987074.1 for
TEF-1α and KC964140.1 for BT2) were used for iden-
tification of clinical isolate CBS 135540. Both genes
possessed enough polymorphism, and therefore, were
excellent markers with 99–100% accuracy for the identifi-
cation of Fusarium species to be Fusarium temperatum
within the Fusarium fujikuroi species complex. No data
were available in the Fusarium MLST database (http://
www.cbs.knaw.nl/fusarium) for this isolate.
In order to establish the phylogenetic position of the

F. temperatum clade, a general tree was made with
MrBayes v. 3.1.2 on the Cipres Portal based on the BT2
(500 bp) and TEF-1α (600 bp) regions. Fifteen species
within the Fusarium fujikuroi species complex clade
were selected for phylogenetic analyses and sequences of
the BT2 and TEF-1α genes were aligned among the se-
quences available from GenBank (Additional file 1: Table S1).
Bayesian analysis was done by using Metropolis-coupled
Markov chain Monte Carlo sampling approach to calcu-
late posterior probabilities. Four simultaneous Markov
chains, three heated and one cold, were run under a
mixed model of sequence evolution and gamma approxi-
mation for rate variation among sites. Chains were ana-
lysed with random starting trees for 107 generations,
sampling from trees every 1000th generation. The burn-in
period was set at 25%. Topologies of the trees generated
with either gene (TEF-1α and BT2) were concordant.
Partition Homogeneity Test (PHT = 0.97) did not detect
conflict between loci, and therefore, these two genes were
combined to investigate species delimitation using PSR
(Figure 3). The BT2 and TEF-1α phylogenetic analyses
showed that the reported clinical isolate was nested
within the Fusarium fujikuroi species complex and was
found to be identical to four environmental strains of
F. temperatum.

Figure 2 Average growth of Fusarium temperatum. Colony diameters (mm) at different temperatures ranging from 25°C to 40°C, measured
after 5 days of incubation on 2% MEA, were calculated for F. temperatum, CBS135540.
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Antifungal susceptibility
Susceptibility testing was performed according to the
guidelines of the Clinical and Laboratory Standards Insti-
tute document M38-A2. Our strain was highly susceptible
to micafungin with an MIC of 0.031 μg/ml, followed by
posaconazole with an MIC of 0.25 μg/ml and amphoteri-
cin B with an MIC of 0.5 μg/ml. Low MICs were also
found for voriconazole (1 μg/ml) followed by isavucona-
zole, natamycin and anidulafungin, with MICs of 4 μg/ml.
The azoles for which high MICs were found were flucona-
zole (>64 μg/ml) and itraconazole (>16 μg/ml) (Table 2).

Discussion
Mycotic keratitis is an important ophthalmologic problem
with slow progression that must be distinguished from its
bacterial counterpart [21] in view of appropriate treat-
ment. Despite developments in diagnostics and therapy,
the infection remains a significant public health problem,
occasionally leading to significant visual disability [22].
Fusarium species are among the most common etiologic
agents of the disorder [23-25] and are problematic because
of their therapy-refractive nature. In direct microscopy
Fusarium species are indistinguishable from Aspergillus

because both produce hyaline, septate hyphae (Figure 1B),
and therefore supplementary diagnostics are necessary.
For accurate identification of the causative agent,

multi-locus analysis involving of parts of TEF-1α and
BT2 genes, known to be informative at the species level
in Fusarium [19,26-28] was performed. Identification of
the etiological agent as F. temperatum was unambigu-
ous. The present case extends the significance of genus
of Fusarium as agents of keratitis and underscores the
utility of molecular methods in verification of these
emerging fungi in the human host [29].
Fusarium species are distributed worldwide in a wide

diversity of habitats such as soil, plant debris, and as patho-
gens on a wide diversity of plant hosts [30]. Some species
synthesize mycotoxins, which may accumulate in infected
plant tissue before harvest or in stored agricultural prod-
ucts where they can be harmful for humans [31]. Fusarium
in agricultural products should not only be considered as a
food spoilers, but also are a risk factor for farmers and har-
vesters dealing with infected farming material [32], causing
traumatic infections.
A remarkable feature in Fusarium is the apparent com-

bination of plant pathogenicity and the ability to cause
infections in humans. A study of members of the Fusarium

Figure 3 Phylogenetic analysis of Fusarium temperatum. Phylogenetic tree resulting from Bayesian analysis for the TEF-1α and β-tubulin
genes (values of 0.8 for Bayesian probability are shown). Fusarium oxysporum (NRRL 22902) was used as the outgroup.

Table 2 MIC values of clinical isolate Fusarium temperatum, CBS135540

Drug AMB FLC ITC VOR POS NATA ISA ANI MICA

MIC values(μg/ml) 0.5 >64 >16 1 0.25 4 4 4 0.031

AMB Amphotericin B, FLC Fluconazole, ITC Itraconazole, VOR Voriconazole, POS Posaconazole, ISA Isavuconazole, NATA Natamycin, ANI Anidulafungin,
MICA micafungin.
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solani species complex demonstrated that strains from clin-
ical specimens, sewage, and plants were all capable of in-
fecting zucchini and growing at 37°C [33]. Zhang et al. [34]
noted that a group of clinical isolates were identical to F.
solani f. sp. cucurbitae race 2, which infects squashes [35].
Conversely, F. oxysporum f. sp. lycopersici race 2 killing to-
mato plants was also able to cause disseminated, fatal infec-
tion in a murine model [36]. Several studies reported
Fusarium subglutinans as an important pathogen of maize,
causing stalk and seeding malformation [36,37], but the
species has been reported as a human opportunist [38,39].
Scauflaire et al. [40] examined the taxonomic status of

30 Fusarium strains isolated from maize fields in Belgium
including three isolates named F. subglutinans and de-
scribed them as a new species, F. temperatum [40]. Subse-
quently the authors [41] used different pathogenicity tests
such as toothpick inoculation to obtain better understand-
ing of the infection process in maize plants and concluded
that F. temperatum is a host-specific plant pathogen. The
species causes seedling blight chlorosis and forms necrotic
lesions in maize stalks; in addition, the species produces
mycotoxins. Pintos et al. [42] reported F. temperatum
seedling malformations, chlorosis, shoot reduction and
stalk rot in maize growing in inoculated soil.
The present case concerns a further example of a plant

pathogen in addition to 70 other Fusarium species causing
human infection. Such examples are expected to be rare,
because in general degradation of plant versus animal
components requires entirely different enzymatic machin-
ery. Van Baarlen et al. [43] noted molecular similarity
between hypothetical virulence factors in plant and
human pathogens, but in practice such species are
extremely uncommon [44].
Our patient developed a mycotic keratitis after trau-

matic introduction with maize leaves during harvest. Its
clinical diagnosis was made by the ophthalmologist. At
the clinical laboratory, it was first misdiagnosed as F.
oxysporum using morphology. These results indicate
that morphologic identification has some limitations.
Cardinal growth temperatures showed optimal devel-

opment at 27°C (Figure 2), with a maximum growth
temperature at 36°C. No growth was observed at 37°C
and 40°C; these temperatures proved to be fungistatic
as regrowth was observed after incubation at 25°C. The
relatively low maximum growth temperature allows
superficial infections such as keratitis. Our patient’s
infection was first clinically diagnosed as a reactional or
bacterial ophthalmitis, leading to the use of a prepar-
ation that contained two antibiotics, a decongestant
(vasopressor), and a synthetic glucocorticoid. It is note-
worthy to record that most cases of keratitis are treated
on the basis of clinical features with antibiotics and
steroids, which are compounds that stimulate fungal
growth [45], while co-inoculation of a fungal agent is

common. At observation of fungal hyphae in tissue,
therapy was changed to natamycin and itraconazole.
The high susceptibility of CBS 135540 was unexpected

because of the intrinsic resistance against antifungal drugs
in Fusarium in general [46-48]. The F. temperatum
isolates had low MICs for micafungin (0.031 μg/ml), posa-
conazole (0.25 μg/ml) and amphotericin B (0.5 μg/ml).
Antifungal susceptibility testing proved that itraconazole
and fluconazole were ineffective, and therefore clinical
improvement of our patient was probably entirely due to
natamycin because the present study shows that the nata-
mycin had good activity against F. temperatum (4 μg/ml).
Patient was not available for follow-up. In similar cases of
keratitis, natamycin, anidulafungin, micafungin, voricona-
zole and amphotericin B were found to be effective [49].

Conclusion
Fusarium species in general show high degrees of resist-
ance to most antifungals. Using molecular identification
to identify a number of rare medically important fungal
genera and species, including Fusarium, is very import-
ant to predict therapeutic outcome and the emergence
of these Fungi. Moreover, this paper provides evidence
indicating Fusarium temperatum as a potential human
opportunist that may have decreased susceptibility to
azoles and other antifungal agents.

Availability of supporting data
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