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Abstract
Background: To design an effective strategy for the control of malaria requires a map of infection and disease risks to
select appropriate suites of interventions. Advances in model based geo-statistics and malaria parasite prevalence data
assemblies provide unique opportunities to redefine national Plasmodium falciparum risk distributions. Here we present
a new map of malaria risk for Kenya in 2009.

Methods: Plasmodium falciparum parasite rate data were assembled from cross-sectional community based surveys
undertaken from 1975 to 2009. Details recorded for each survey included the month and year of the survey, sample size,
positivity and the age ranges of sampled population. Data were corrected to a standard age-range of two to less than 10
years (PfPR2-10) and each survey location was geo-positioned using national and on-line digital settlement maps. Ecological
and climate covariates were matched to each PfPR2-10 survey location and examined separately and in combination for
relationships to PfPR2-10. Significant covariates were then included in a Bayesian geostatistical spatial-temporal framework
to predict continuous and categorical maps of mean PfPR2-10 at a 1 × 1 km resolution across Kenya for the year 2009.
Model hold-out data were used to test the predictive accuracy of the mapped surfaces and distributions of the posterior
uncertainty were mapped.

Results: A total of 2,682 estimates of PfPR2-10 from surveys undertaken at 2,095 sites between 1975 and 2009 were
selected for inclusion in the geo-statistical modeling. The covariates selected for prediction were urbanization; maximum
temperature; precipitation; enhanced vegetation index; and distance to main water bodies. The final Bayesian geo-
statistical model had a high predictive accuracy with mean error of -0.15% PfPR2-10; mean absolute error of 0.38% PfPR2-

10; and linear correlation between observed and predicted PfPR2-10 of 0.81. The majority of Kenya's 2009 population (35.2
million, 86.3%) reside in areas where predicted PfPR2-10 is less than 5%; conversely in 2009 only 4.3 million people (10.6%)
lived in areas where PfPR2-10 was predicted to be ≥40% and were largely located around the shores of Lake Victoria.

Conclusion: Model based geo-statistical methods can be used to interpolate malaria risks in Kenya with precision and
our model shows that the majority of Kenyans live in areas of very low P. falciparum risk. As malaria interventions go to
scale effectively tracking epidemiological changes of risk demands a rigorous effort to document infection prevalence in
time and space to remodel risks and redefine intervention priorities over the next 10-15 years.
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Background
As most endemic countries begin to re-focus their malaria
control goals, including in some cases a target of elimina-
tion [1], contemporary maps that reliably define sub-
national variation in disease risk are required to inform
priority setting and the selection of appropriate suites of
intervention. Recent efforts at developing empirical global
maps of Plasmodium falciparum risk herald a new era of
using maps to define regional populations at risk of
malaria to guide the future global malaria control agenda
[2]. However, the applicability of malaria risk mapping to
make predictions at spatial scales and time points neces-
sary for effective health service planning and review
depends largely on the amount and resolution of infor-
mation available. For example, it is recognized that conti-
nental risk maps may not provide sufficient detail and
precision for national and sub-national level control pri-
ority setting [2].

Kenya is one of very few countries that have a plethora of
malaria risk data, spanning over 30 years. The earliest
attempts to describe the spatial distribution of malaria
risk in Kenya were based on expert opinion of malaria sea-
sons and climate [3]. Between 1998 and 2005 several
attempts were made by our group to model the predictive
accuracy of this historical map [4,5] or use historical par-
asite prevalence data and remotely sensed proximates of
climate to predict risk using sub-optimal spatial methods
that were unable to define fully the uncertainty in the
modeled maps [6,7]. Here we present a more robust Baye-
sian model-based geo-statistical spatial-temporal method
to predict the risk of malaria in Kenya in 2009 using the
largest assembled contemporary empirical evidence for
any country in Africa. As a new phase of malaria control
in Kenya begins, the implications of the resulting malaria
risk map for decision makers and the prospects for the
future of malaria control nationwide are discussed.

Methods
P. falciparum parasite rate as a marker of risk
There are many measures of the intensity of malaria trans-
mission [8,9]. Direct measures of transmission intensity
applicable for malaria modeling include the entomologi-
cal inoculation rate (EIR) and the basic reproductive
number (Ro). EIR is the number of parasite-specific infec-
tious bites received by a person per unit time and Ro is the
average number of secondary infections resulting from
one infected individual being introduced into a non-
immune host population. These indices are rarely meas-
ured, however, thus limiting their utility for spatial mod-
eling [10]. An alternative measure of P. falciparum malaria
risk is the parasite rate (PfPR), which is the proportion of
a random sample of population with malaria parasites in
their peripheral blood, used frequently to define transmis-
sion intensity since the 1950's [11] and has a predictable

mathematical relationship to the rarely sampled measures
of EIR and Ro [12-14]. The PfPR has therefore become the
benchmark indicator by which malaria risk is modeled
and mapped in Africa [2,6,7,15-17].

Data identification
PfPR survey data were identified using basic search princi-
ples and inclusion criteria described elsewhere [18] with
two notable exceptions: firstly survey data were included
if surveys were undertaken from 1st January 1975, because
of the rich Ministry of Health survey data between 1975
and 1984 [19]; and secondly no restriction was placed on
sample size for inclusion in the spatial modeling [2].

Data searches included online searches for peer-reviewed
publications using PubMed [20] and African e-repositor-
ies [21]; manual searches of monthly returns archived
from over 40 field stations maintained by the Ministry of
Health's Division of Vector Borne Diseases; reviews of
master's and doctoral thesis titles and abstracts from the
Universities of Nairobi and Jomo Kenyatta; access to
household survey data supported as part of national [22]
or sub-national sample surveys on malaria or nutrition
[23,24]; and an extensive correspondence and data shar-
ing exercise with the prolific malaria research community
in Kenya or those working in the country but based over-
seas [25]. Data searches began in 2005 and were com-
pleted with final reviews of published reports and
correspondence with national research groups on 31st

March 2009. All data were entered into a customized
Microsoft Access (Microsoft 2007) database to include
information on survey location, survey timing (month
and year), age ranges of the sampled population, sample
size, numbers reported positive for P. falciparum infection
and the methods of parasite detection [18].

Pre-processing of PfPR survey data
Geo-location techniques
A series of independent databases of cities, towns and vil-
lages developed since 2004 with longitude and latitude
coordinates from Global Positioning System (GPS)
recordings are available in Kenya. These include a
national schools database developed through a mapping
project in 2008 by the Ministry of Education [26]; a data-
base of settlements connected to the classified motorable
road network compiled as part of a road mapping project
by the Ministry of Roads and Public Works [27]; and a
variety of smaller databases developed as part of research
projects or development programmes. In addition, a data-
base of villages digitised from topographical maps in
2002 was obtained from the International Livestock
Research Institute. These databases were first used to geo-
position survey locations with priority given to the GPS
sources. Where survey locations could not be geo-posi-
tioned from any of these national databases, digital data-
Page 2 of 14
(page number not for citation purposes)



BMC Infectious Diseases 2009, 9:180 http://www.biomedcentral.com/1471-2334/9/180
bases such Microsoft Encarta (Microsoft 2007),
Alexandria Digital Library [28] and Falling Rain Genomics
Inc. Global Gazetteer [29] were used. A database of enu-
meration areas for the 1999 census obtained from the
Kenya National Bureau of Statistics was used as a final
source if survey data could not be positioned using the
other sources. Survey locations were classified as points if
they could be positioned to an area ≤10 km2; wide area
(>10 km2 to <25 km2); or polygon (≥25 km2) [18].

Age standardization of PfPR
Under stable endemic transmission PfPR is age-depend-
ent and rises during early childhood, peaks in older chil-
dren and falls through adolescence and adulthood, the
rate of decline a consequence of development of anti-par-
asitic immunity [14]. PfPR surveys, however, are often
reported for a variety of age-ranges. The assembled PfPR
data were therefore standardized to the classical age-range
of 2 to less than 10 years using an algorithm based on cat-
alytic conversion models first adapted for malaria by Pull
and Grab [30] and modified by Smith et al., [14]. This age-
standardized parasite rate, henceforth referred to as PfPR2-

10, was computed for each survey report [2].

Assembling and testing ecological and climate covariates
A number of ecological and climatic factors affect the
development and survival of the P. falciparum parasite and
the malaria-transmitting Anopheles vector [31]. National
and regional malaria risk modelling efforts have used var-
ious proximate determinants of infection and disease risk
including continuous and categorical forms of urbaniza-
tion [17,32,33], rainfall [4,15-17,34-37], vegetation cov-
erage [15,17,32,35,38,39], aridity [36,40], distance to
water bodies [5,15-17,35-37,41,42], altitude [4,5,36,37]
and temperature [4,5,15-17,34-37,39,41]. We elected to
explore the discriminatory effects of these covariates
derived from census, meteorological, topographical and
remotely sensed satellite sources all described in detail in
Additional File 1. All covariates were re-sampled to 1 × 1
km spatial resolutions using ArcGIS 9.2 (ESRI, Redlands,
CA, USA) and matched to survey locations where the
numbers of individuals examined were ≥50 (n = 2,094).

The relationships of the covariates in their continuous and
categorical forms were first visually examined against
PfPR2-10 data using scatter and box plots. These were used
to aggregate the covariates into suitable categories that
corresponded to biologically appropriate definitions, pre-
vious applications of remotely sensed variables and reten-
tion of effective sample sizes (see Additional File 1). A
univariate non-spatial binomial logistic regression model
was then implemented for each covariate with PfPR2-10 as
the dependent variable in Stata/SE Version 10 (Stata Cor-
poration, College Station, TX, USA). The results of the uni-
variate analyses were used to determine the relative

strength of each candidate covariate as a predictor of
PfPR2-10 and identify those which qualified for inclusion
in the Bayesian geostatistical model. First, where there was
more than one plausible way of categorizing a covariate,
the size of the odds ratio, the Wald's p-value and the value
of Akaike Information Criterion (AIC), a measure of the
goodness of fit of an estimated statistical model [35], were
used to determine which approach resulted in categories
with the strongest association with PfPR2-10 [SI 1]. Once
the best categorizations were determined, a collinearity
test of all the covariates was undertaken and if a pair had
a correlation coefficient > 0.9 [43], the variable with the
highest value of AIC was dropped from subsequent anal-
ysis. The selected covariates were then analysed in a bino-
mial multivariate logistic regression with PfPR2-10 as the
dependent variable. Using backwards variable elimina-
tion, covariates with Wald's P > 0.2 were removed step-
wise until a fully reduced model was achieved.

Bayesian space-time models
Using the Kenya PfPR2-10 data and the selected covariates,
a spatial-temporal Bayesian generalized linear geostatisti-
cal model [2] was implemented to predict a malaria map
of Kenya for 2009. Bayesian geostatistical models provide
the ability to predict values of a spatially continuous event
at unsampled locations using combinations of the sam-
pled data in space and time, and importantly allow for
calculation of robust uncertainty estimates around model
predictions [2,43,44]. The underlying assumption of the
Kenya PfPR2-10 model was that the probability of preva-
lence at any survey location was the product of two fac-
tors. First, a continuous function of the time and location
of the survey, modified by a set of covariates, and mod-
elled as a transformation of a space-time Gaussian ran-
dom field. Second, a factor depending on the age range of
individuals sampled in each survey. The distribution of
the second factor [2] was based on the procedure
described by Smith et al. [14]. The Bayesian spatial-tem-
poral model was implemented in two parts starting with
an inference stage in which a Markov Chain Monte Carlo
(MCMC) algorithm was used to generate samples from
the joint posterior distribution of the parameter set and
the space-time random field at the data locations. This
was followed by a prediction stage in which samples were
generated from the posterior distribution of PfPR2-10 at
each prediction location on a 1 × 1 km grid. Details of the
spatial-temporal Bayesian geostatistical models are pre-
sented in Additional File 2.

Model validation and measures of uncertainty
Selection of model validation test data
To ensure that the validation data were spatially represent-
ative of the whole country, a spatial declustering algo-
rithm [2] was implemented. This algorithm defined
Thiessen polygons whose boundaries enclosed the area
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that was closest to each point relative to all other points
around each survey location. A 10% sample of the larger
Kenya PfPR2-10 dataset was then drawn randomly. Each
data point had a probability of selection proportional to
the area of its Thiessen polygon so that data located in
densely surveyed regions had a lower probability of selec-
tion than those in sparsely surveyed regions [45]. The
Bayesian spatio-temporal geostatistical model was then
implemented in full using the remaining 90% of data.

Computing model accuracy and uncertainty
A series of validation statistics were computed by compar-
ing the predicted PfPR2-10 values to actual PfPR2-10
observed at the validation locations. The validation statis-
tics were: the linear correlation coefficient; mean error
(ME); and mean absolute error (MAE) is a measure of the
bias of predictions (the overall tendency to over or under
predict). Finally, the probability of membership of a sur-
vey location to its assigned endemicity class (see next sec-
tion) was computed as a measure of uncertainty. These
probabilities, ranging from 1 (no uncertainty in class
membership) to 0.14 (membership equally likely to all
classes) were computed from the posterior distributions
resulting from the Bayesian geostatistical model as
explained in detail in Additional File 2.

Malaria risk classifications and estimations of populations 
exposed to risk
Seven endemicity classes of PfPR2-10 were selected: <0.1%;
≥0.1% and < 1%; ≥1% and <5%; ≥5% and <10%; ≥10%
and <20%; ≥20% and <40%; ≥40%. These classes were
selected as they can be used to compute approximates of
the traditional measures of endemicity [11], are congruent
with recommendations for the selection of suites of vector
control and the timelines to effective transmission control
[9,46,47] and allow for interpretation of lower risk catego-
ries where the predominant spatial risks are not among
the higher endemicity classes. The probability of member-
ship to each endemicity class was estimated from the pos-
terior probability distributions of PfPR2-10 for each pixel
generated by the Bayesian geostatistical model, as
described in Additional File 2.

A high-resolution (100 × 100 m) population distribution
map of Kenya [48] was used to compute the number of
people in each of the malaria endemicity classes. This map
was constructed from a combination of satellite imagery
and land cover maps which were used to develop models
that identified the location of settlements [48,49]. The
modelled settlements map was then used to redistribute
census population counts within the small enumeration
area polygons. The resulting high-resolution map repre-
sented estimated population distribution in Kenya for the
year 2000. This raster population surface was then pro-
jected to 2009 using provincial inter-censal growth rates

from the 1999 national census [50]. The raster malaria
endemicity map was then overlaid on the projected pop-
ulation map and the number of people in each endemic-
ity class, overall and by province, was extracted using
ArcGIS 9.2 Spatial Analyst tool.

Results
Assembled data
A total of 2,756 PfPR random sample surveys were assem-
bled for the period 1975-2009. Of these, 74 survey loca-
tions were excluded from analysis because they were
polygons (n = 30); were not positioned (n = 41); or were
missing survey month (n = 3). Of the remaining 2,682
data points (Table 1), 1,672 (62.3%) were obtained from
Ministry of Health reports; 364 (13.6%) from peer-
reviewed journal articles and conference abstracts; 111
(4.1%) from theses; and 535 (19.9%) from unpublished
grey literature and personal communication sources. The
majority of surveys were undertaken in rural areas (n =
2,153, 80.3%). A significant number of surveys were
undertaken as part of school health surveillance since
1975 (n = 1,372, 51.1%). Of the total survey sample 2,095
(78.1%) were spatially unique locations (shown in Figure
1) while the remainder (587, 21.9%) were surveys under-
taken in the same locations but at different times between
1975 and 2009. Most of the survey locations (73%) were
positioned using GPS coordinates. A sample semivario-
gram of the PfPR2-10 data indicated the presence of spatial
autocorrelation up to lags of 1 decimal degree or the
equivalent of ~111 km at the equator (Figure 2).

Testing of climate and ecological covariates
The univariate analysis showed that all the biologically
selected categorical covariates were statistically significant
predictors of differences in PfPR2-10 (see Additional File 1
and Table 2). There was reduced risk of infection in areas
that were: urban compared to rural; of minimum average
annual temperature of <16°C compared to ≥16°C; of
maximum average annual temperatures of <25°C or
>30°C compared to between 25°C - 30°C; of zero or 1-3
sets of three continuous months of precipitation >60 mm
in an average year compared to corresponding precipita-
tion patterns that occurred >3 sets in an average year;
where EVI was ≤0.3 compared to >0.3; where the survey
was located at an altitude of ≤500 m or >1500 m com-
pared to between >500-1500 m above sea level; and were
at a distance to main water bodies of >12 km relative to
≤12 km (see Additional File 1 and Table 2).

In the multivariate regression, however, only the classifi-
cations of urban-rural; maximum temperature; precipita-
tion; EVI and distance to main water bodies were included
(Table 2). Altitude and minimum temperature were
excluded from the multivariate analysis because they were
highly correlated with each other (R2 = 0.97) and with
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maximum temperature (R2 > 0.70) and both had compar-
atively higher AIC values [SI 1]. From the multivariate
analysis the risk of malaria parasite infection was lower in
locations that were: urban compared to rural (odds ratio,
95% CI: 0.50, 0.36-0.70, p < 0.001); of maximum temper-
atures <25°C (0.25, 0.12-0.52, p < 0.001) or >30°C (0.61,
0.44-085, p = 0.003) compared to between 25°C- 30°C;
of zero (0.53, 0.36-0.83, p = 0.005) or 1-3 (0.63, 0.46-
0.85, p = 0.003) sets of three continuous months of pre-
cipitation >60 mm in average year compared to >3 sets;
and at distance to water bodies of >12 km (0.62, 0.49-
0.77, p < 0.001) relative to ≤12 km (Table 2). Although
there was a reduced risk of infection prevalence at EVI of
≤0.3 (0.77, 0.57-1.06) compared to >0.3, this was not sta-

tistically significant (p = 0.114). This, however, did not
preclude the inclusion of EVI in the final model set as it
still met the inclusion criteria with a P value < 0.2 and the
AIC value of the multivariate model was lower with it
compared to without.

Bayesian predicted risk projected to 2009
The 2009 map of the predicted posterior mean distribu-
tion of PfPR2-10 is shown in Figure 3a. The predicted
malaria endemicity class map is shown in Figure 3b and
indicates that the majority of the country's surface area
falls into endemicity classes of <5% PfPR2-10. The lowest
endemicity class (< 0.1% PfPR2-10) covers most of Nairobi
and Central provinces and some parts of the Eastern and

Table 1: Summary of the Kenya PfPR survey data showing the number of survey data points and the sample size across different 
categories.

Survey data points* Spatially unique data 
points

Survey locations with no 
positive P. falciparum 

samples

Persons examined

Residence
Rural 2,133 1,706 321 334,993
Urban 549 389 87 52,799

Upper age (years) sampled
≤5 449 410 161 20,570
>5 and ≤10 364 255 12 66,893
>10 and ≤20 1,596 1,209 224 247,616
>20 273 221 11 52,713

Decade
1975-1984 698 499 124 119,181
1985-1994 611 476 14 135,799
1995-2004 610 452 43 69,899
2005-2009 763 668 227 62,913

Province
Central 140 134 106 13,225
Coast 872 557 90 108,335
Eastern 233 210 78 31,186
Nairobi 15 15 2 3,105
North Eastern 56 54 30 5,437
Nyanza 729 605 23 127,383
Rift Valley 365 301 70 56,880
Western 272 219 9 42,241

Type of sample survey
Community 1,310 993 177 179,939
School 1,372 1,102 231 207,853

Method of malaria testing
Microscopy 2,107 1,549 177 353,449
Rapid diagnostic test 575 546 231 34,343

Total 2,682 2,095 408 387,792

*Data from 16 survey locations for which PfPR values were available but the number examined and number positive were not are not included in 
Table 1. Survey data points presented here include 2,095 spatially unique and 587 spatial duplicates but temporally unique points.
Page 5 of 14
(page number not for citation purposes)



BMC Infectious Diseases 2009, 9:180 http://www.biomedcentral.com/1471-2334/9/180

Page 6 of 14
(page number not for citation purposes)

Province map of Kenya showing the distribution of 2,095 spatially unique survey locations out of the 2,682 selected for analysisFigure 1
Province map of Kenya showing the distribution of 2,095 spatially unique survey locations out of the 2,682 
selected for analysis. Colours ranging from light pink to dark red represent increasing PfPR2-10. Where there were repeat 
surveys at the same location (n = 587), PfPR2-10 data are displayed from the most recent survey. CE = Central province; CO = 
Coast province; EA = Eastern province; NA = Nairobi province; NE = North Eastern province; NY = Nyanza province; RV = 
Rift Valley province; and WE = Western province.
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Rift Valley provinces (Figure 3b). The endemicity class of
between 0.1 and 1% covers most of the North Eastern,
Eastern, Rift Valley and Coast provinces. High transmis-
sion areas (endemicity class ≥40% PfPR2-10) were pre-
dicted mainly in small parts of Nyanza province along the
shores of Lake Victoria and cover <2% of the total area of
Kenya.

Model validation
The mean error in the prediction of PfPR2-10 for 2009
revealed low overall bias with a slight tendency to under-
estimate predictions by -0.15% (Table 3). The mean abso-
lute error also showed a relatively moderate model preci-
sion with low average error of predictions of 0.38%. The
correlation between the actual and predicted values for
the hold-out set was 0.81 indicating a strong linear agree-
ment (Figure 4). In assessing the endemicity classes, the
overall probabilities of membership of the predicted class
were all greater than the chance assignment value of 0.14
and in most of the country was greater than 0.45 (Figure
5).

Population at risk in 2009
Of the estimated 40.8 million people in Kenya in 2009,
the majority (65.6%) lived in areas where malaria risk was
<1% PfPR2-10 with 14.8 million (36.2%) living in areas of
< 0.1% PfPR2-10 (Table 4). Approximately 8.5 million

(20.8%) people lived in areas where transmission risks
were predicted to be between 1% and 5% PfPR2-10 in
2009; while the remaining population (5.6 million,
13.7%) lived in areas of risk ≥5% PfPR2-10, of which 4.3
million (10.6% of Kenya's 2009 population) were pre-
dicted to be living in the highest transmission areas of
≥40% PfPR2-10 (Table 4).

Discussion
We have assembled over 2,600 independent, empirical
survey estimates of P. falciparum infection prevalence in
Kenya and used these data to generate a contemporary
map of infection prevalence at a 1 × 1 km resolution for
the year 2009 using space-time geostatistical models
within a Bayesian framework. The modeled distribution
had a high predictive accuracy as shown by the low values
of ME and MAE and high correlation between predicted
and observed PfPR2-10 (Table 3 & Figure 4). The probabil-
ity of endemicity class membership were also generally
moderate to high across the country with the exception of
small pockets of the low population-density areas of the
northern districts where there was relatively sparse distri-
bution of input data in time and space (Figure 5). This
mapped distribution of malaria risk represents the most
accurate depiction of parasite exposure described for
Kenya since efforts to map risk began in the 1950's
[2,3,5,6]. More importantly it represents a distribution of
risk in 2009 serving as a contemporary basis upon which
to design the future of malaria control in Kenya.

The use of a carefully selected suite of covariates to inform
the prediction of risk is a departure from the current
Malaria Atlas Project approach, with the exception of the
use of urban-rural classification [2], but consistent with
other approaches to modeling malaria distributions
[5,6,15-17,35]. In fact several discrete categories of the
covariates were as different in infection prevalence as the
differences described for urban versus rural surveys. We
elected not to include a mask of zero or unstable transmis-
sion based upon temperature and aridity as developed
previously by Guerra et al, [40]. Rather we have assumed
that these climatic drivers of transmission would be cap-
tured within the model and have chosen to bin the risk
classes within much smaller PfPR2-10 ranges at the lowest
end of the transmission spectrum. The lowest risk class
encompasses predicted PfPR2-10 between 0 and < 0.1%
and covers approximately 91,000 km2 within the Nairobi
and Central provinces and small parts of Eastern and Rift
Valley (Figure 3). Defining absolute zero transmission is
conceptually difficult and practically impossible to meas-
ure empirically using PfPR2-10 and we therefore feel that
the more conservative and inclusive approach used here
allows for the possibility of transmission until proven
otherwise.

Sample semi-variograms of PfPR2-10 dataset (n = 2,682) indi-cating the presence of spatial autocorrelation in the PfPR2-10 data up to lags of 1 decimal degree or the equivalent of ~111 km at the equatorFigure 2
Sample semi-variograms of PfPR2-10 dataset (n = 
2,682) indicating the presence of spatial autocorrela-
tion in the PfPR2-10 data up to lags of 1 decimal 
degree or the equivalent of ~111 km at the equator.
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Table 2: Results of univariate and multivariate analysis of the ecological and climatic covariates (SI 1) against Kenya PfPR2-10 data of 
sample size ≥50 individuals.

PfPR2-10

Number of survey 
locations

Mean (median) 
PfPR2-10, Chi2 (P-value)

Univariate regression*: 
Odds Ratio (95% CI), 

P-value

Multivariate 
regression*: Odds Ratio 

(95% CI), P-value

Categorical covariates

Urban
Rural 1636 27.6 (21.9) Ref Ref
Urban 458 15.4 (11.9) 0.48 (0.34, 0.66), <0.001 0.50 (0.36, 0.70), <0.001

3300, <0.001

Maximum temperature 
(Degrees Celsius)

≤25 214 7.7 (2.3) 0.20 (0.10, 0.41), <0.001 0.25 (0.12, 0.52), <0.001
25-30 1628 29.8 (25.9) Ref Ref
>30 252 16.2 (9.2) 0.46 (0.35, 0.60), <0.001 0.61 (0.44, 0.85), 0.003

4700.0, <0.001

Minimum temperature 
(Degrees Celsius)

<16 928 23.5 (17.1) 0.81 (0.66, 0.97), <0.036
≥16 1166 27.6 (21.9) Ref

754.7, <0.001

Sets of 3 consecutive 
months in an average 
year with precipitation 
>60 mm

0 1398 13.7 (9.0) 0.37 (0.26, 0.51), <0.001 0.53 (0.35, 0.83), 0.005
1-3 333 19.6 (12.4) 0.56 (0.42, 0.74), <0.001 0.63 (0.46, 0.85), 0.003
>3 363 30.3 (26.1) Ref Ref

8200.0, <0.001

Enhanced vegetation 
index

> 0.3 1534 16.9 (11.3) Ref Ref
≤0.3 560 29.0 (24.4) 0.50 (0.39, 0.64), <0.001 0.78 (0.57, 1.06), 0.114

3300.1, <0.001

Altitude (m)
0-500 689 22.2 (13.0) 0.59 (0.47, 0.74), <0.001
>500-1500 860 32.6 (29.1) Ref
>1500 545 19.4 (13.0) 0.50 (0.39, 0.64), <0.001

4100.2, <0.001

Distance (km) to main 
water bodies

≤12 mean distance 1306 28.6 (23.5) Ref
>12 mean distance 788 21.1 (14.5) 0.67 (0.54, 0.82), <0.001 0.62(0.49, 0.77), <0.001

3300, <0.001

*The category with the highest median PfPR2-10 is used as the reference class. Therefore the odds ratios are expected to be below 1.00 for all 
covariates.
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What is striking about the contemporary 2009 distribu-
tion of malaria infection risk is the enormity of Kenya's
land surface under very low intensity transmission. Over
94% of Kenya's surface area is predicted to be exposed to
a PfPR2-10 of less than 5% and is home to 86% of Kenya's
projected population in 2009 (Table 3). Approximately
66% of the 2009 population live in areas where infection
prevalence is less than 1%, including a large majority

where risks are hard to detect empirically (PfPR2-10 <
0.1%) (Table 3). Conversely areas of high transmission, as
defined by a PfPR2-10 of ≥40%, representing areas expected
to be intractable to immediate reductions in parasite prev-
alence with scaled-up use of insecticide treated nets [47]
are located in the strip of land along the shores of Lake
Victoria (Figure 3). In 2009 only 11% of Kenya's popula-
tion was exposed to this highest transmission intensity
class (Table 3). Historically holo-to-hyperendemic trans-
mission (≥50% PfPR2-10) was thought to exist across much
larger reaches of the Kenyan coast, around Lake Victoria
and along the Tana River [3,51]. In the present modeled
iteration of PfPR2-10 holo-endemic transmission (>75%
PfPR2-10) no longer exists and hyper-endemic transmis-
sion is constrained to small pockets within the darkest red
class shown in Figure 3. Although this study doesn't
present change of infection risk over time, it seems plausi-
ble that across much of Kenya the extent and intensity of
P. falciparum transmission has undergone a recent decline
with increasing spatial areas and populations becoming
exposed to lower and lower risks of parasite exposure. This

Spatial distribution of P. falciparum malaria in Kenya at 1×1 km spatial resolutionFigure 3
Spatial distribution of P. falciparum malaria in Kenya at 1×1 km spatial resolution. a) continuous posterior mean 
PfPR2-10 prediction; b) endemicity classes: PfPR2-10 < 0.1%; ≥0.1 and < 1%; ≥1 and <5%; ≥5 and <10%; ≥10 and <20%; ≥20 and 
<40%; ≥40%.

Table 3: Summary of validation statistics for predicting 
continuous PfPR2-10 in Kenya based on a validation set of 210 data 
points.

Validation measure

Linear correlation coefficient of predicted versus observed 0.81
Mean error (% PfPR2-10) -0.15
Mean absolute error (% PfPR2-10) 0.38

Mean error is a measure of the bias of predictions (the overall 
tendency to over or under predict) whilst mean absolute error is a 
measure of overall precision (the average magnitude of error in 
individual predictions).
Page 9 of 14
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has implications for a changing clinical epidemiology in
areas undergoing transition, with older children becom-
ing increasingly at risk of severe clinical outcomes [52-55]
but more importantly as communities transition to very
low levels of parasite exposure overall malaria morbidity
and mortality will decline substantially [52,56].

Although the model is characterized by generally low
uncertainties, the pockets of greatest predicted uncertainty
are located in the northern districts of Turkana, Marsabit
and Moyale (Figure 5). Surprisingly, pockets of risk >10%
PfPR2-10 were observed in these hot and generally arid
parts of the country traditionally regarded to be of unsta-
ble low risk. These areas, which generally have low popu-
lation densities and have traditionally not been targeted
for scaling of malaria preventive interventions, exhibit
highly focal transmission close to water features, such as
the Turkwell, Tana and Kerio rivers and were referred to in
historical maps as 'malarious near water' [3]. Because of
their presumed low risk, few empirical studies of malaria
have been undertaken in these areas. The malaria situa-
tion among these poor, pastoralist communities remains
ill-defined. In addition there are some important method-
ological constraints to defining risk in areas of very low

transmission and new approaches to micro-geographic
Bayesian modeling of risk based upon a presence/absence
criterion may be required to improve risk mapping in
these areas where the majority risk is negligible, seasonal
and exceptionally heterogeneous, associated with the
presence of water features.

Further improvements in malaria risk mapping using
PfPR2-10 might be achieved if the prediction models were
corrected for whether microscopy or RDT was used to
examine parasitaemia given the varying sensitivities and
specificities of the two methods [57]. In this study, how-
ever, this was not possible because information on the
type of RDT used and the quality of microscopy was lack-
ing for most surveys. In future, it may be feasible to
develop universal models that correct for sensitivity/spe-
cificity differentials of the methods used to test for infec-
tion, preferably based on large-scale population surveys
which have used both RDT and microscopy for the same
individuals with the appropriate quality assurance and
external validity.

The prospects for Kenya to transition the majority of its
population living in high transmission areas in the next

Scatter plot of actual versus predicted point-values of PfPR2-10 for the selection validation set (n = 210)Figure 4
Scatter plot of actual versus predicted point-values of PfPR2-10 for the selection validation set (n = 210). The lin-
ear correlation (R) of the actual versus predicted PfPR2-10 was 0.81. The solid black line shows the line of perfect fit; the dashed 
black line is the trend line with intercept set at zero.
Page 10 of 14
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Spatial distribution of probability of membership of P. falciparum malaria endemicity class in Kenya at 1 × 1 km spatial resolutionFigure 5
Spatial distribution of probability of membership of P. falciparum malaria endemicity class in Kenya at 1 × 1 km 
spatial resolution. Given that there are seven endemicity classes, the lowest probability of class assignment is 0.14. Any value 
above 0.14 is better than a chance allocation to the endemicity class. Lines shown on the map represent the contours of the 
different endemicity classes shown in Figure 3.
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10 years to areas of low (PfPR2-10 <5%) or very low ende-
micity (PfPR2-10 <1%) look promising. It is however
important to emphasize the control implications of this
low stable endemic control. There appear to be areas
along the Kenyan coast that currently experience risks
associated with a PfPR2-10 <5% and are likely to have tran-
sitioned to this state from meso-hyperendemic condi-
tions. If this has been achieved through the scaled-up use
of insecticide treated nets (ITN) then universal coverage
must be maintained as withdrawal of ITN would result in
a devastating rebound where vectors persist but functional
immunity has been modified among the human host
population. Conversely in areas that have historically had
low or very low transmission, for example in semi-arid
areas, the adoption of ITN may not be the most cost-effec-
tive strategy. As such all areas of similar contemporary risk
may not be equivalent in terms of strategic control. One
therefore must interpret contemporary distributions of
risk for control planning in concert with the potential vul-
nerabilities of transmission based upon vector distribu-
tions or historical descriptions of risk. For Kenya it is also
important to recognize that there are vast areas where
infection risks are low and have historically been low
because of their ecological niches (arid, urban or at high
elevation). While these communities enjoy a low risk of
infection, risks are not absent and thus cost-efficient suites
of interventions must be tailored to meet their needs. This
poses a challenge where universal coverage of ITN and
presumptive fever treatment with Artemisinin based com-
bination therapy remain the single bedrock of most
national malaria control strategies across Africa.

Conclusion
There remains some debate over the feasibility of malaria
elimination in Africa [58-61]. Kenya is an example where
infection prevalence is low across large parts of the coun-
try. However moderate-to-high risks remain in well
defined areas, some of which share borders with neigh-

boring countries and risks are not absent from marginal-
ized hard-to-reach communities in semi-arid areas of the
country. Successes in reducing infection prevalence in
some areas [[55], Okiro EA, Alegana VA, Noor AM,
Mutheu JJ, Juma E, Snow RW: Malaria paediatric hospital-
ization between 1999 and 2008 across Kenya. Submitted]
that have led to reductions in disease burden [[54,55],
Okiro EA, Alegana VA, Noor AM, Mutheu JJ, Juma E, Snow
RW: Malaria paediatric hospitalization between 1999 and
2008 across Kenya. Submitted] must be maintained and
expanded and not viewed as 'job finished'. This alone may
pose challenges for sustained financing. What is encourag-
ing is that risks can be measured using survey data of
infection prevalence; we have shown here that their spa-
tial distribution can be modeled and mapped with accu-
racy; and that this can become the basis for judging the
future success of control nationwide using data that does
not depend upon opportunistic historical surveys. To this
end the Kenyan Ministry of Health proposes to maintain
annual surveys of malaria infection prevalence among
school children as part of its monitoring of the revised
national malaria strategy 2009-2017 (E Juma, personal
communication). This will represent the first attempt in
Africa to serially measure, map and model changing ende-
micity as part of scaled intervention coverage and where
robust baseline endemicity for 2009 exists to judge suc-
cess.
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EA: Enumeration area; EVI: Enhanced Vegetation Index;
GPS: Global Positioning System; ILRI: International Live-
stock Research Institute; KNBS: Kenya National Bureau of
Statistics; MAE: Mean Absolute Error; MCMC: Markov
Chain Monte Carlo; ME: Mean Error; NASA: National Aer-
onautics and Space Administration; NDVI: Normalized
Difference Vegetation Index; NGA: National Geospatial-
Intelligence Agency; PfPR: P. falciparum parasite rate;
SRTM: Shuttle Radar Topography Mission.

Table 4: Total population (in millions) at different risks of P. falciparum transmission in 2009 in Kenya

PfPR2-10  < 0.1% ≥ 0.1 - <1.0% ≥ 1.0 - <5.0% ≥ 5.0-10.0% ≥ 10.0 - <20.0% ≥ 20.0 - <40.0% ≥ 40.0

Central 4.30 0.04 0.00 0.00 0.00 0.00 0.00
Coast 0.01 0.96 2.32 0.00 0.07 0.05 0.00
Eastern 1.81 3.73 0.09 0.00 0.00 0.00 0.00
Nairobi 5.51 0.00 0.00 0.00 0.00 0.00 0.00
North Eastern 0.45 1.62 0.07 0.00 0.00 0.00 0.00
Nyanza 0.00 0.43 2.17 0.00 0.01 0.61 2.22
Rift Valley 2.68 5.19 2.13 0.00 0.02 0.01 0.01
Western 0.00 0.00 1.70 0.00 0.03 0.43 2.10

Total
(%)

14.77
(36.2)

11.98
(29.4)

8.48
(20.8)

0.00
(0.0)

0.13
(0.003)

1.10
(0.03)

4.33
(10.6)

Mean error is a measure of the bias of predictions (the overall tendency to over or under predict) whilst mean absolute error is a measure of 
overall precision (the average magnitude of error in individual predictions).
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