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Abstract
Background: The relationship between cholera and climate was explored in Africa, the continent
with the most reported cases, by analyzing monthly 20-year cholera time series for five coastal
adjoining West African countries: Côte d'Ivoire, Ghana, Togo, Benin and Nigeria.

Methods: We used wavelet analyses and derived methods because these are useful mathematical
tools to provide information on the evolution of the periodic component over time and allow
quantification of non-stationary associations between time series.

Results: The temporal variability of cholera incidence exhibits an interannual component, and a
significant synchrony in cholera epidemics is highlighted at the end of the 1980's. This observed
synchrony across countries, even if transient through time, is also coherent with both the local
variability of rainfall and the global climate variability quantified by the Indian Oscillation Index.

Conclusion: Results of this study suggest that large and regional scale climate variability influence
both the temporal dynamics and the spatial synchrony of cholera epidemics in human populations
in the Gulf of Guinea, as has been described for two other tropical regions of the world, western
South America and Bangladesh.

Background
Epidemics of new and old infectious diseases periodically
emerge and these emergences reveal the complex dynam-
ical relationships among humans, pathogens and the
environment [1,2]. Connections between weather, cli-
mate and diseases are well established [3], with many dis-
eases occurring during certain seasons or erupting from
unseasonable flood or drought conditions [4]. With new
concerns about global warming, accompanied by greater

climate variability, many recent studies have focused on
disease fluctuations related to interannual climate oscilla-
tions (e.g., El Niño) (see [3,5-8]). One of the major under-
lying questions of these recent studies is: Are climatic
oscillations that occur at medium or low time frequency
responsible for global patterns of recent reemergence of
disease?
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Evidence for influence of climate on cholera dynamics in
Asia (Bangladesh) [5-7,9,10] and South America (Peru)
[6,11] has been published. Cholera, an ancient and devas-
tating acute diarrheal illness caused by the ingestion of
toxigenic Vibrio cholerae, occurs in widespread epidemics
that remain a major public health problem in many devel-
oping countries, most often localized in the intertropical
belt [12,13]. Studies usually have focused on the influence
of climate on cholera dynamics across regions of cholera
endemicity, mainly because they can provide environ-
mental or climatic factors that promote epidemics
through analysis of long-term historical records [5-
7,14,15]. In these regions, cholera dynamics display regu-
lar seasonal cycles and pronounced interannual variabil-
ity. In Bangladesh, as in Peru, nonstationary links have
been shown with climate interannual variability (e.g., the
El Niño event that occurs every 3–7 years) [5,7,16-18].

The question of what interannual climate variability trig-
gers the disease dynamics patterns in non-endemic chol-
era regions in Africa, however, remains unanswered.
Analyses of long-term climatic and epidemiological data
allow exploration of this issue at both the local (e.g.,
country) and regional scale (e.g., contiguous coastal coun-
tries). Africa appears to be the continent most affected by
the disease, with more than 95,000 cases reported in 2004
[12].

In this study, we provide a review of the spatiotemporal
patterns of cholera in five African countries on the tropical
Atlantic coast of Africa–Côte d'Ivoire, Ghana, Togo, Benin
and Nigeria–shown in Figure 1. We address the role of cli-
mate interannual variability on both global and local
scales (i.e., Indian Oscillation Index (IOI) and rainfall)
that has shaped incidence patterns within the area over
the past 20 years. IOI was used because climate variability
in the Indian Ocean is related to global climate change
[19] and rainfall has also been evoked to explain cholera
epidemic patterns [14,15,20]. We used wavelet analyses
and derived methods because these are useful mathemat-
ical tools to provide information on the evolution of the
periodic component over time and allow quantification
of non-stationary associations between time series [21-
24].

The new findings provided by this study are useful for the
development of an effective early warning system that is
based on climate data over an extended intertropical litto-
ral zone. In the future, it will be possible to integrate real-
time monitoring of oceanic regions, climate variability
and epidemiological and demographic population
dynamics to predict cholera outbreaks.

Methods
Cholera and climatic data
Epidemiological data corresponding to morbidity reports
between 1975 and 2002 were extracted from the Weekly
Epidemiological Record published by the World Health
Organization (WHO), available on the WHO website
[25]. Each report, corresponding to (i) the number of
morbidity cases and (ii) the beginning and ending dates
of the report, was entered into an internal database. The
general characteristics of the morbidity cases dataset are
summarized in Table 1. Since the dates between two
reports are not uniform, we transformed the data by linear
interpolation to obtain monthly data. For example, when
the period of WHO report was longer than one month, or
began one month and finished the following month or
later, e.g., March 15 to April 24, we proportionally attrib-
uted the number of morbidity cases over the total period
(March 15–April 24) based on the number of days in each
of the respective months, i.e., 17 days in March and 24
days in April. Globally, the actual number of cholera cases
is known to be much higher; the discrepancy is the result
of underreporting and other limitations of surveillance
systems, such as inconsistency in case definition and lack
of a standard vocabulary. Underreporting may also occur
due to fears of unjustified travel and trade-related sanc-
tions [26]. It is therefore paramount that effective public
health interventions, such as improved prevention,
hygiene and management of the environment, be imple-
mented in order to contain cholera outbreaks among vul-
nerable populations in high-risk areas. The
underreporting poses a serious problem for quantitative
analyzes. In this study, we chose to use the wavelet
method as a qualitative approach in order to describe the
periodicity of cholera epidemics, and thus the results are
less affected by underreporting issues.

Rainfall data were extracted from an historical monthly
precipitation data set, 1975 to 1996, available on the Cli-
mate Research unit website of the University of East
Anglia at Norwich (UK) [27]. Five zones were selected as
the most representative of human community settle-
ments, with most of the given country population concen-
trated near the coastline (see Figure 1). For three of the
five countries, we used a mean between rainfall time series
because these countries were related to two or more rain-
fall time series. We computed the mean for (i) Ghana
between Ghan132 and Ben270, (ii) Benin between
Ben270 and Ben201, and (iii) Nigeria between Ben201
and Nig037 rainfall time series.

The Indian Oscillation Index (IOI) [28] is based on the
variability in sealevel atmospheric pressure (SLP) between
Mahe in the Seychelles (4°S, 55°E) in the West Indian
Ocean, and Darwin (10°S, 130°E) in the East Indian
Ocean. It is realised by computing the differences between
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Table 1: Summary of the cholera cases dataset.

Country Total number of cases 
(1975–2002)

Total number of reports Number of reports 
interpolated (%)

Number of report lengths 
> 2 months (%)

Côte d'Ivoire 13,887 25 10 (40) 5 (20)
Benin 17,787 78 34 (43.6) 7 (9)
Ghana 55,261 135 64 (47.4) 20 (14.8)
Nigeria 106,272 79 33 (41.8) 16 (20.3)
Togo 9,970 42 25 (59.5) 6 (14.3)

Data were extracted from the Weekly Epidemiological Records published by the World Health Organization for the time period 1975–2002.

Map of the five West-African countries included in this study and selected areas of rainfall time seriesFigure 1
Map of the five West-African countries included in this study and selected areas of rainfall time series. Black 
squares represent the pixel of rainfall, 2.5 decimal degrees of latitude by 3.75 decimal degrees of longitude: (A) Cotiv021, (B) 
Ghan132, (C) Ben270, (D) Ben201 and (E) Nige037.
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the monthly standardized anomalies of SLP at both sites
(Mahe minus Darwin), from 1975 to 2002. IOI warm
events (increase in the sea surface temperature and
strengthening of easterly winds at the equator) are associ-
ated with IOI values less than -1. In contrast, values greater
than +1 indicate cold events [29].

Wavelet Analysis: Pattern characterization of Cholera 
Epidemics and Climate Variability
Wavelet analysis [21,22], in contrast to Fourier analysis, is
useful for biological time series analyses, mainly because
of the non-stationarity (i.e., the oftenobserved changes in
the periodic behaviour) of such series. Wavelet analysis
allows detection of periodicity, as well as local variation
with time, indicating temporal evolution of the periodic
components [22]. Over the past five years, wavelet analy-
sis has increasingly been used in ecology [30,31] and epi-
demiology [8,21,32,33] to explore spatial and temporal
dynamics of disease.

In this study, we used wavelet analysis to determine the
significant oscillating modes of disease time series based
on wavelet decomposition and wavelet power spectra
[22], and we used the phase angles of the disease time
series analyses to characterize the pattern of epidemic syn-
chrony [8,21,24,33]. The pattern of disease outbreak syn-
chrony was tested and based on the comparison between
the observed distribution of the phase difference and that
obtained by bootstrapping. Wavelet coherency analyses
identified and quantified possible statistical associations
between the two time series, e.g., between the disease time
series and climatic indices. Coherency is roughly similar
to a classical correlation, but it is relevant to oscillating
components in a given frequency mode for a given time
period [8,33]. Statistical analyses were performed using
Matlab (version 6.5, The MathWorks, Naticks, Massachu-
setts, United States).

Results
Frequency, Synchronicity of Cholera Epidemics, and 
Climate Variability
The wavelet and global power spectra analyses of (i) chol-
era incidence across the five West African countries and
IOI time series, and (ii) rainfall time series are presented
in Figure 2 and in Figure 3, respectively. Periodicities for
all incidences and IOI time series during 1975–2002 were
detected even if transient. Notably, a common 2–5-year
periodicity was detected in all countries except for Côte
d'Ivoire, and a shift from 4- to 3 year periodicity for IOI
was found to have occurred between 1989 and 1994.
Analyses of rainfall interannual variability between 1975
and 1996 also highlight a common 3–5-year cycle among
all countries (Figure 3).

We extracted phase angles in different periodic bands
(between 2 and 5 years) to explore the common mode of
oscillations of cholera incidence and rainfall. Results (Fig-
ure 4-A) show that all incidence time series were synchro-
nous between 1989 and 1994, whatever the explored
periodic band, 1.8–2.5-year, 3–4-year, or 4–5-years.
Moreover, the observed synchrony between 1989 and
1994 was statistically significant for the three periodic
bands (Table 2). Similarly, Figure 4-B shows that all rain-
fall time series were synchronous during 1989 and 1994
for the 1.8–2.5 and 3–4 year periodic bands (Table 2).

Association Between Cholera Incidence and Climate 
Variability
Wavelet coherency between the time series for the three
sets of comparisons, incidence vs. rainfall, incidence vs.
IOI, and rainfall vs. IOI are shown for each country in Fig-
ure 5. IOI and rainfall during the early 1990's were signif-
icantly associated with cholera, except for Côte d'Ivoire, in
the 2- to 4-year periodic band.

Discussion
Cholera interannual periodicity and the link between
cholera dynamics and climate variability remain incom-
pletely understood and generally focused only on
endemic regions [7,9,14,15]. Pascual et al. [5] and Rodo et
al. [7] described a role of El Niño/Southern Oscillation in
the dynamics of cholera in Bangladesh. In addition, the
complex relationship between largescale climatic variabil-
ity and spatiotemporal patterns under local environmen-
tal conditions and weather contributes to the dynamics of
local pathogen populations in aquatic ecosystems [34],
and/or disease transmission [35,36]. In this context, using
a comparative approach developed for macroecology
applications [37], the relationship between cholera inci-
dence in five different African countries and climate inter-
annual variability was explored. Indeed, analyses of long-
term monthly disease time series underline both the com-
plex, nonstationary dynamics of cholera epidemics in
West Africa, and a relationship with large-scale climate
variability.

From 1989 to 1994, (i) four of five cholera dynamics (i.e.,
Benin, Ghana, Nigeria, and Togo), rainfall, and IOI dis-
played a significant 2- to 3-yr periodicity, (ii) cholera inci-
dence time series, as well as rainfall time series, were
highly synchronous across the five African countries, and
(iii) the same four of five incidence time series, rainfall
and IOI were significantly coherent in the 2- to 3-yr peri-
odic band. The 2- to 3-yr periodicity detected in this study
was in harmony with results obtained in Asia and in
South America [5,7,14]. This remarkable observed syn-
chrony between incidences in the Gulf of Guinea perfectly
matches the spatio-temporal synchrony of rainfall, sup-
porting a link between cholera epidemics and climatic
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Table 2: Results of the test of synchrony for incidence time series and rainfall between 1989 and 1994.

Periodic Band 1.8–2.5 years 3–4 years 4–5 years

Incidence Entropy = 0.7043
p-value < 0.0001

Entropy = 0.7407
p-value = 0.0004

Entropy = 0.7542
p-value = 0.0360

Rainfall Entropy = 0.7276
p-value < 0.0001

Entropy = 0.7091
p-value = 0.0041

Entropy = 0.6327
p-value = 0.0669

The test was realized in three different periodic bands and based on normalized entropy, 0 for flat distribution and a 1 for unimodal distribution.

Wavelet analyses of epidemiological time series for the five countries and Indian Oscillation Index (IOI): (A) Côte d'Ivoire, (B) Benin, (C) Ghana, (D) Nigeria, (E) Togo and (F) IOIFigure 2
Wavelet analyses of epidemiological time series for 
the five countries and Indian Oscillation Index (IOI): 
(A) Côte d'Ivoire, (B) Benin, (C) Ghana, (D) Nigeria, 
(E) Togo and (F) IOI. Prior to wavelet analyses, incidence 
data were square-root-transformed in order to dampen 
extremes in variability. In addition, all the time series were 
normalized. For each time series: (i) the left panel illustrates 
incidence time series (square root transformed) and climatic 
index time series; (ii) the middle panel shows the wavelet 
power spectrum for the different series (xaxis: time in year; 
yaxis: period in year). The power is coded from low values, 
in white, to high values, in black. The black dashed lines show 
the α = 5% significance level computed on 1,000 boot-
strapped series. The inside area within the cone of influence 
(black line) indicates the region not influenced by edge 
effects. (iii) The right panel corresponds to the global wavelet 
spectrum (black line) with its significant threshold value of 5% 
(dashed line).

Wavelet analyses of the rainfall time series: (A) Cotiv021, (B) mean between Ghan132 and Ben270, (C) Ben270, (D) mean between Ben270 and Ben201, and (E) mean between Ben201 and Nige037Figure 3
Wavelet analyses of the rainfall time series: (A) 
Cotiv021, (B) mean between Ghan132 and Ben270, 
(C) Ben270, (D) mean between Ben270 and Ben201, 
and (E) mean between Ben201 and Nige037. To 
deseasonalize the rainfall time series we removed all oscillat-
ing components with period less than 12 months using a low-
pass Gaussian filter. In addition, all time series were normal-
ized. For each time series, (i) the left panel displays rainfall 
time series. The solid and dense lines correspond to the raw 
time series and the deseasonalized time series, respectively. 
(ii) The middle panel shows the wavelet power spectrum for 
the different series (xaxis: time in year; yaxis: period in year). 
The power is coded from low values, in white, to high values, 
in black. The black dashed lines show the α = 5% significance 
level computed on 1,000 bootstrapped series. The inside 
area within the cone of influence (black line) indicates the 
region not influenced by edge effects. (iii) The right panel 
corresponds to the global wavelet spectrum (black line) with 
its significant threshold value of 5% (dashed line).
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Pattern of synchrony obtained from phase evolutions of (A) cholera time series between the five countries during 1975–2002 and (B) five selected rainfall time series during 1975–1996Figure 4
Pattern of synchrony obtained from phase evolutions of (A) cholera time series between the five countries 
during 1975–2002 and (B) five selected rainfall time series during 1975–1996. For the left panels (A): the red dotted 
line is Benin, the cyan solid line is Côte d'Ivoire, the red dashed line is Ghana, the black solid line represents Nigeria, and the 
blue dotted line is Togo; (B): the red dotted line is Ben201, the cyan solid line is Ben270, the red dashed line is Ghan110, the 
black solid line represents Ghan132, the blue dotted line is Cotiv21, and the blue dotted line is Nige037. For both cholera (A) 
and rainfall (B), the right panels represent the distributions of phase differences between 1989 and 1994, illustrated by a black 
dashed square in the left panels; analyses were computed with the wavelet transform in three periodic bands: (1) 1.8–2.5 years, 
(2) 2–3 years, and (3) 4–5 years.
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Coherency analysis between cholera incidence, rainfall, and IOI across five countries: (A) Côte d'Ivoire, (B) Ghana, (C) Togo, (D) Benin, and (E) NigeriaFigure 5
Coherency analysis between cholera incidence, rainfall, and IOI across five countries: (A) Côte d'Ivoire, (B) 
Ghana, (C) Togo, (D) Benin, and (E) Nigeria. For each country, incidence data were square-root transformed (SQRT) to 
rescale the variance. We obtained mean between selected rainfall time series for three countries: Ghana, mean between 
Ghan132 and Ben270, Benin mean between Ben270 and Ben201, and Nigeria mean between Ben201 and Nige037. To desea-
sonalize the rainfall time series all oscillating components with period less than 12 months were removed using a low-pass 
Gaussian filter. In addition, all series were normalized. Coherency analyses presented are, from left to right: incidence SQRT 
data vs rainfall, incidence SQRT data vs IOI, and rainfall vs IOI. In the coherence power spectra (x-axis: time in year; y-axis: 
period in year), power is coded from low value, in dark blue, to high value, in dark red. The white dashed lines show α = 5% 
and α = 10% significance levels, computed on 1,000 bootstrapped series. The inner area, within the cone of influence (black 
line), indicates the region not influenced by edge effects.
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variability. Indeed, the influence of rainfall increase on
cholera incidence can best be explained by flood waters
on disease transmission [15]. Furthermore, the coherency
between disease incidence, rainfall and climate variability
in the Indian Ocean describes a direct or indirect link, as
reported by Rodo et al. for Bangladesh.

On the other hand, the Côte d'Ivoire showed no periodic-
ity between 1987 and 1994, and a lack of coherency
between incidence and two climatic variables (rainfall
and IOI). This could be explained by interaction between
the two main drivers of the disease, namely, extrinsic fac-
tors such as variability in climate or health policy, and
intrinsic factors, such as the patterns of immunity in
human population. Koelle et al. [15] explored interannual
cholera cycles in Bangladesh and highlighted the critical
interplay of environmental forcing and temporary immu-
nity. Even if local environmental conditions such as rain-
fall or ambient temperature, influenced by global climate
variability, initiate an outbreak, an observed coherency
between IOI and rainfall in Côte d'Ivoire, the refractory
period of the disease dynamic, when the population of
susceptibles is low, can prevent outbreaks. Furthermore,
sanitary conditions and access to health care centers
reduce the susceptible population size and transmission
probability, thus resulting in a decline in the sensitivity of
cholera dynamics to climate variability.

In fact, the question raised from the results of this study
concerns the dynamics of cholera: Is synchronization of
cholera a response of local populations, according to eco-
logical theory, to climate interannual variability? The
presence of global synchrony among the countries for
cholera, a disease highly susceptible to climatic factors,
supports the hypothesis of a common external forcing,
namely climatic factors, explaining synchronicity, and
supporting a key prediction of the Moran theorem [38], a
phenomenon described in population biology [38-41]
and in epidemiology [8,42]. The hypothesis consists of an
intricate, hierarchical mechanism with climatic variability
at a large scale quantified by IOI at the origin of the syn-
chronization of both the cholera incidence and rainfall
over all of the West African countries included in this
study. Indeed, Janicot (1997) described that empirical
studies have shown that warm El Niño/Southern Oscilla-
tion (ENSO) episodes are associated with the intertropical
convergence zone (ITCZ) over the tropical Atlantic which
is related to the rainfall in West Africa. It is also likely that
many other factors, e.g., the level of poverty and human
population density, influence the spatial and temporal
distribution of cholera [13,36,43], but perhaps now, chol-
era dynamics are more strongly associated with climate
[9,14,44,45]. [46]

Conclusion
In conclusion, besides the two inter-tropical regions of the
world, Asia and South America, global climate change
may well impact cholera diseases in many other parts of
the inter-tropical zone [5,7,8,14,15]. The study reported
here is an important step toward a long-term study of the
spatial and temporal dynamics of cholera in Africa at the
regional level. The main perspective of this work should
be to focus on a local scale, as has been done in Bangla-
desh, using collected data from diarrhoeal surveillance
programs in selected African areas. The benefit of the pre-
cision of this type of study will open a new field of
research and allow a reliable model for cholera predic-
tions [14,15,45,47,48]. Development in the near future of
a concrete and useful plan of action for health policy
should be based coupling both realistic epidemiological
models, including intrinsic factors such as level of immu-
nity or cross immunity of the population, and environ-
mental parameters monitored by remote sensing, such as
sea surface temperature, sea surface height or land surface
temperature [10,15,49].
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