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Abstract

Background: Influenza is characterized by seasonal outbreaks, often with a high rate of morbidity
and mortality. It is also known to be a cause of significant amount secondary bacterial infections.
Streptococcus pneumoniae is the main pathogen causing secondary bacterial pneumonia after
influenza and subsequently, influenza could participate in acquiring Invasive Pneumococcal Disease
(IPD).

Methods: In this study, we aim to investigate the relation between influenza and IPD by estimating
the yearly excess of IPD cases due to influenza. For this purpose, we use influenza periods as an
indicator for influenza activity as a risk factor in subsequent analysis. The statistical modeling has
been made in two modes. First, we constructed two negative binomial regression models. For each
model, we estimated the contribution of influenza in the models, and calculated number of excess
number of IPD cases. Also, for each model, we investigated several lag time periods between
influenza and IPD. Secondly, we constructed an "influenza free" baseline, and calculated differences
in IPD data (observed cases) and baseline (expected cases), in order to estimate a yearly additional
number of IPD cases due to influenza. Both modes were calculated using zero to four weeks lag
time.

Results: The analysis shows a yearly increase of 72—118 IPD cases due to influenza, which
corresponds to 6—10% per year or 12-20% per influenza season. Also, a lag time of one to three
weeks appears to be of significant importance in the relation between IPD and influenza.

Conclusion: This epidemiological study confirms the association between influenza and IPD.
Furthermore, negative binomial regression models can be used to calculate number of excess cases
of IPD, related to influenza.
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Background

Influenza, with its annual epidemics, is the infection asso-
ciated with highest mortality in the developed world. In
the United States, an average of more than 18,000 annual
deaths are due to influenza, and the influenza epidemics
cause almost 50,000 annual hospitalizations in influenza
and pneumonia among elderly people [1].

Streptococcus pneumoniae is the most important pathogen
causing secondary bacterial pneumonia after influenza [2-
4]. The influenza virus infection, makes the respiratory
epithelial cells more susceptible to pneumococcal inva-
sion [5], and in mouse models, the increased susceptibil-
ity to secondary bacterial pneumonia after influenza has
in part shown to be caused by excessive IL-10 production
and reduced neutrophil function in the lungs. In several
early, hospital-based studies, pneumococcal pneumonia
has been shown to be a complication of clinical diagnosis
of influenza [6-9]. In spite of modern intensive care, Inva-
sive pneumococcal disease (IPD) is associated with a high
case fatality rate [10,11]. Known risk factors for IPD are
age (the very old or the very young), male sex, and under-
lying debilitating conditions[12]. In Sweden, the overall
yearly incidence of IPD is 15 per 100,000, and in the
above 65 years age group the incidence may be as high as
40 to 50 per 100,000 [10]. In the United States, IPD is esti-
mated to cause more than 3,400 deaths per year among
elderly people [3]. Older generation pneumococcal
polysaccharide vaccines have proven to be effective
against IPD in adults, and newer conjugate pneumococcal
vaccine also are effective in young children [13,14]. In eld-
erly persons and other medical risk groups, influenza and
pneumococcal vaccines are commonly used together [15].

Both IPD and influenza have distinct seasonal patterns,
with winter peaks [16-18]. Besides this seasonal pattern,
there are year-to-year variations both in intensity and tim-
ing of occurrence [18-20]. Schwartzman et al were the first
to document a temporal association between influenza
and IPD in the early 1970s [21]. The same finding has
later been described in studies from Scotland [22], the
Netherlands [23], and the United States [4,24,25].

The aim of this studies it to investigate the association
between influenza and IPD using Swedish surveillance
data. Poisson regression has often been used in epidemi-
ological studies when an outcome variable (e.g. number
of IPD cases) is a rare occurrence, and Poisson regression
has recently been applied in studies investigating the asso-
ciation between influenza and mortality [26,27]. How-
ever, one of the main characteristics of the Poisson model
is that its variance equals its mean. In other words, if a
Poisson model is fitted to data with a variance greater than
its mean (overdispersion), the variance will be underesti-
mated. To overcome this limitation, we apply negative
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binomial models, which give the same estimation of a
mean value as a Poisson model, but include overdisper-
sion in the variance [28].

Methods

IPD data

Since 1994, all invasive pneumococcal isolates obtained
in Sweden (one per patient) have been reported to the
Swedish Institute for Infectious Diseases Control (SMI).
An isolate is defined as invasive if it is retrieved from
blood, cerebrospinal fluid or other normally sterile sites.
All such isolates, reported to the SMI from 1 January 1994
to 28 March 2004 (n = 12,010) were included in the
study. Most isolates (95%) were collected from blood, fol-
lowed by cerebrospinal fluid (5%); and other normally
sterile sites (less than 1%). Fifty percent of the isolates
were from elderly persons (65 years of age of older), 43%
were from adults (20-64 years of age), and 7% of the iso-
lates were from children and teenagers. In the analysis, the
date of culture was used. Since this date was not always
specified in the reports, the samples where this date is
lacking were omitted (n = 373).

The symptoms of invasive disease are of acute nature; the
time of onset of disease and the date of culture is assumed
to coincide within 1 to 2 days. The data used in the anal-
ysis is aggregated to weeks, which should reflect the cor-
rect week of onset of disease. Finally, as mentioned above,
invasive disease is often of sudden onset. This promote
rapid culturing and also diagnosing of the IPD, therefore
the assumption was made, that the vast majority of the
invasive cases of pneumococcal infections are diagnosed
correctly.

Influenza data

In Sweden, the influenza surveillance is based on weekly
reports (Monday to Sunday of each individual week) on
the number of influenza cases diagnosed by antigen detec-
tion, nucleic acid amplification and/or virus isolation by
the local laboratories to SMI. Serology reports are not
included in these reports. From 1994 to 2001, the registra-
tion of influenza occurred from week 43 to week 16. From
2001/2002, the influenza-reporting season was extended
from week 40 to 20. For the influenza reports, we used the
same time period (January 1994 to March 2004) as for the
IPD isolates (n = 10,498). The age distribution of influ-
enza cases varied between individual years. Data on age of
influenza cases is available from the season 1998/1999,
and shows that an average of 47% of the cases were elderly
(above 65 years) and 39% adults (20-64 years) during the
period 1998-2004.

We defined influenza activity as presence of laboratory
reports of influenza cases. As the laboratory cases mainly
originate from patients with severe disease in need of hos-
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pital care, this data might not reflect the true influenza
activity among the general population. Since the season
1999/2000 additional components have been added to
the Swedish influenza surveillance system, based on
reports of the number of patients with influenza-like ill-
ness from about 120 sentinel physicians in outpatient
care. During the time when both systems have been run-
ning in parallel, the time periods for influenza activity
have coincided [29], supporting the hypothesis, that the
laboratory surveillance system adequately mirrors com-
munity influenza activity despite the selected population
it is based on. This consistency does also indicate that
even though the criteria for culturing might have changed
during the observation period, it has not affected the def-
inition of the annual influenza period by the laboratory
reporting.

As mentioned above, the influenza data is based on labo-
ratory reports, and mainly reflects the hospitalized
patients and not the population as total. Hence, the
amount of cases may not be representative for the total
population. However, the time of occurrence coincide in
the sentinel system and the laboratory reports. In order to
incorporate the time of occurrence but not the total
amount of influenza (according to laboratory reports) in
the models, an indicator for influenza is used (one if
influenza is present and zero if absent).

Models

In subsequent models, following variables and abbrevia-
tions are used:

Bins Parameter for the effect of presence of influenza

Bin¢ Parameter for the intercept

Bgin and P, estimated cyclic parameters

Estimated yearly trend

Byear

L, Modeled mean value, with the Gamma distribution,
I'(o;,9)

Xo; Denotes the index variables for influenza (1 if influ-
enza is present, 0 if absent)

x,; Indicates the year
i is an index variable form 1 to 533 for the models

j is an index variable from 1 to 52 for the baseline

To evaluate the relation between influenza and IPD, two
negative binomial regression models were constructed.
The question of interest was if the presence of influenza
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affects the number of IPD cases. The models needed to
capture the seasonal characteristics in data, hence the

. . (2w
models include seasonal terms: 51n[§tiJ and

cos(%ti ) Additionally, the models needed to include

a parameter that represents the influenza and a yearly
trend. The outcome variable is the mean value of number

of IPD cases ;, with a Gamma distribution I'(;,8), hence
models include parameters o; and 3. In the models, each
individual week, ¢, (t;= 1,...,52) is modeled. For analytical
details, see appendix A.

Secondly, a mean baseline of all years was constructed.
The baseline included the same parameters as the models,
except the influenza parameter and the yearly trend. To
estimate the mean baseline we used a subset of IPD data.
In this subset only weeks when influenza was absent were
included, in the time periods when influenza was moni-
tored (winter season). (Hence, this subset only contained
IPD data when influenza was not present.)

Since it is a mean, it includes only one season, (j = 1 to
52).

Model |
The first model was defined as:

. (2n 2n
log(c:;) = log(8) + Bgin Sm(iti )+ Beos Cos(ifi J+ Bint + BinfXoi +Byeartii

In this model, a global parameter for the year was used. In
other words, the same height with the same amplitude
was set for each year as a mean yearly trend for all years.
Hence, the influenza data indicator and the yearly trend
are the sole cause of the differences between the individ-
ual years.

Model 2

When the IPD data was studied, it was notable that the
peaks were of varying height, possibly due to variation
between individual years, see Figure 1 and 2. A way of
incorporating this into a model was to allow each periodic
cycle to vary in height of amplitude for each year. This can
be obtained by using an index variable for each year. Sub-
sequently, in Model 2, the parameter B,.,,, divided into 11
parameters (one for each year) was included. The model
was defined as:

. (2n 2n
log(a;) = 10g(8) + Bsin Sln( Eti J+ Beos COS( 5 L )+ Bint +BinfXoi +

Hyear1*1i +--- + Byear11¥11i
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Figure |
Total number of IPD diagnosis (solid line) and number of lab-
oratory confirmed cases of influenza (dashed line).

Here, x,;x,,...x;,; denote the data sets including index var-
iables for individual years.

Baseline
The baseline for Model 1 was defined as:

. [ 2m 2r
log(ct;) = 10g(8) + Bgin Sm( 5l J"‘ Beos COS( =l ]+ Bint

Since the baseline is a mean of all years, the yearly param-
eter is of no importance; hence baseline for Model 1 and
2 are identical.

Model fitting
For the models, the question of interest is if the presence
of influenza affects the number of IPD cases. Our hypoth-

Figure 2
Total number of IPD diagnosis. The presence of influenza
during different years is shown as horizontal solid lines.
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esis is that a random case of IPD could occur due to a pre-
vious influenza infection. This could take place one or
several weeks after the influenza infection. In order to
investigate a possible delay in time in acquirement of IPD
due to influenza, both models were tested in five modes:
no lag, 1, 2, 3 and 4 weeks lag. For all calculations, STATA
8.0 was used. The Negative binomial regression models
were calculated using function 'nbreg'. In order to estab-
lish if a negative binomial regression model should be
used instead of Poisson, i.e. to establish if overdispersion
was present, Pearson, x2 statistics were calculated for each
of the evaluated models. See appendix B for details.

To evaluate which model was preferred, the log-likeli-
hood was calculated for each model.

Results

The number of reported influenza and IPD cases and
number of laboratory confirmed domestic cases of influ-
enza are presented in Figure 1. Number of IPD cases and
the presence of influenza (indicator variable used in the
calculations), over the study period is shown in Figure 2.
Also, weekly distributions of number of IPD cases, pre-
sented as weekly box plots, are shown in Figure 3B. The
analyses of data was made using two approaches: 1) esti-
mating number of excess cases due to the influenza
parameter in the models where presence of influenza
parameter was significant, and 2) calculating mean differ-
ence of IPD cases (observed) from the baseline
(expected).

Firstly, we studied the estimated value of influenza param-
eter, B, its confidence intervals and p-values for both
models in five modes: no lag, 1, 2, 3 and 4 weeks lag, in
order to establish if the influenza indicator had an impact
on the IPD data set. For both models the lag time of three
and four weeks was significant, see Table 1. For model 1,
also the two weeks lag seemed to be of importance. The
Akaike Information Criterion estimates (AIC) were of
similar value, see Table 1, hence this estimate did not
clearly point out any of the models as better or worse fit-
ted as compared to the others. To further estimate the
impact of the influenza parameter, the models with signif-
icant parameter B;,, were recalculated without the term
Bins Setting the term f;.¢to zero is equivalent with calcu-
lating the model with x,; = 0. This could estimate number
of IPD cases that should have occurred if no influenza was
present or if influenza had no effect. The overall mean dif-
ference of the models and its 95% Confidence Intervals
(c.i.) for each week were then calculated, and its yearly dis-
tribution is shown in Figure 4. The mean annual effect of
the influenza epidemics was an excess of 81 IPD cases in
Model 1 with the lag time of 3 weeks and 72 in Model 2
with the same lag (Table 2). This could translate to an
attributable fraction of influenza-associated IPD 6-7%
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IPD data used in baseline estimation

Boxplots of weekly IPD data

Figure 3

A. Each marker (star) represent number of IPD cases during influenza free weeks, in the time frame when influenza was moni-
tored. Hence it shows the data points used in baseline estimation. The solid line represents baseline. B. For each week, the dis-
tributions of all IPD data during the period 1993—2004 are presented as box plots. The solid line represents baseline.

when considering the whole year, and 12-13% when only  indicated that a negative binomial approach was to be
considering the seasons when influenza is monitored.  preferred over a Poisson model. Here Pearson %2/n statis-
Seasonal excess morbidity due to influenza parameter in  tic is estimated to 3.10 for Model 1 with 3 weeks lag and
those models had its peak in week 2, as shown in Figure ~ 3.19 for Model 3 with 3 weeks lag.

4. The models showed that the weekly mean number of

excess cases at week 2 was 3.6 for Model 1 with 3-weeklag,  Secondly, a baseline was created in order to establish a
and 4.4 for Model 2 with 3-week lag. Pearson 2 statistics =~ mean level of IPD-incidence when influenza was absent.

Table I: Results of estimates for 3, with its 95% Confidence Intervals (c.i.) in parenthesis. Log likelihood values for each model and
lag. Log likelihood values for the null-model were -1827.19 for Model | and -1816.85 for Model 2. The significant estimates of f3;sare
marked with (*) and (*¥).

Influenza parameter, 3 P-value Log likelihood AIC
and its 95% c.i.

Model |
No lag 0.05 (-0.05 - 0.15) 0.36 -1826.8 3665.5
| week lag 0.13 (0.03 -0.23) 0.012* -1824.0 3660.0
2 weeks lag 0.1'1 (0.01 —0.21) 0.029* -1824.8 3661.6
3 weeks lag 0.14 (0.04 - 0.24) 0.005%* -18232 3658.3
4 weeks lag 0.13 (0.03 -0.22) 0.008** -1823.7 3659.3

Model 2
No lag 0.03 (-0.07 - 0.14) 0.8l -1816.8 3663.6
| week lag 0.105 (-0.001 —0.211) 0.051 -1814.9 3659.9
2 weeks lag 0.10 (-0.01 - 0.20) 0.120 -1815.6 3661.3
3 weeks lag 0.13 (0.02-0.23) 0.021%* -1814.2 3658.4
4 weeks lag 0.1'1 (0.01 —0.21) 0.031* -1814.5 3659.1
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Table 2: Yearly number of excess IPD cases, based on influenza parameters effect in the models and difference in data and baseline.
Also, 95% Confidence intervals for the number of cases in from the models and Baseline are presented in parenthesis.

Number of cases

Percent per year Percent per season

Model | (3 weeks lag) 81 (24 -243)
Model 2 (3 weeks lag) 72 (14 -138)
Baseline (3 weeks lag) 118 (71— 16l)

The baseline was modeled from all influenza-free weeks
when influenza was monitored (winter season) during
the 11-year study period; however, during 2003 influenza
occurred in all 13 studied weeks, hence, that year did not
contribute to the estimation of baseline. For each year, a
mean difference between the number of IPD (observed
cases) and the baseline (expected cases) was calculated.
We choose a 3 weeks lag in the calculations of baseline,
since previous calculations (estimates of influenza as an
index variable in the models) showed closest association
between influenza and IPD with the lowest p-value, using
this lag, see Table 1. The mean yearly distribution of data
and the estimated baselines are shown in Figure 3A. 95%

7% (2 - 12%)
6% (I — 12%)
10% (6 — 14%)

13% (4 — 24%)
12% (2 — 23%)
20% (12 - 27%)

confidence intervals was calculated using bootstrap. The
mean annual difference of IPD was 118 cases. This corre-
sponds to 10% considering the whole year and 20% dur-
ing the season of monitoring influenza.

Discussion and conclusion

In this paper, two approaches are used to study the impact
of influenza on IPD: the first one estimates impact of an
influenza parameter in the models, and the second esti-
mates the mean difference of IPD cases from an influenza-
free baseline. Both methods used in this study indicated
an increase in number of IPD cases due to influenza. Since
both take different factors into account, it is difficult to

# of excess IPD-cases and its 95% CI

I
[ Model 1
B Model 2

Figure 4

Bars represent number of weekly excess cases due to influenza parameter in Model | and 2, with three-week lag. Furthermore,
the 95% Confidence Intervals for influenza parameter, for Model | and 2, are shown.
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decide which one of them should be preferred. Hence,
conclusions should be made taking both methods into
account.

The first approach, when the effect of the influenza
parameter is estimated, uses influenza data as an indicator
variable, which most likely underestimates the impact of
influenza during the winter season. This could probably
explain why the results in this approach give lower esti-
mates of number of IPD cases related to influenza, than
the baseline approach. Furthermore, in this method, the
relevance of the influenza parameter in the model and its
effect on subsequent IPD cases is studied. The result
shows that the incorporation of a time lag of three to four
weeks lag puts forward the significance of influenza indi-
cator variable in both models. Also, as shown can be seen
in Table 1, for both models the estimates of B, increase
with the size of the lag and peak at 3 weeks lag, indicating
that there is a delay which must be taken into account.
However, since influenza data is transformed to be an
indicator variable of influenza, there can be no inference
made about the relative changes in number of IPD by
increasing or decreasing the number of influenza by one
unit. Also, even though Model 2 did not appear to be sta-
tistically better (give better fit to the IPD data) than Model
1, we chose to include it in this report, since it is interest-
ing that even when taking into account differences in
mean values of IPD between the individual years, the
results are similar.

The second approach, where a baseline is constructed, is
based on a subset of the IPD data set, in other words the
baseline is constructed of all weeks when influenza is not
reported. The validity of the baseline varies over the sea-
son, with lowest variance in the spring and fall and largest
variation during winter (since in this time of year, influ-
enza is often present, hence, very few data points are used
in the estimation). Since influenza is not monitored dur-
ing summer, there is no data from this period used in the
estimation of the models.

Our study estimates conservatively that 12-20% of all IPD
cases (during influenza season) in Sweden are due to pre-
vious influenza. As IPD remains associated with severe
morbidity and mortality even in developed countries, this
study gives a clear indication of the added impact influ-
enza has on the public health by causing severe secondary
bacterial infections.

In order to detect a case of IPD in the surveillance system,
a sample must be collected and sent to the laboratory for
culturing. In the analysis, the date of culture was used as
the onset date. Since onset of IPD disease is often of acute
nature, it is realistic to assume that the culturing is made
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closely to the onset of disease, with no major delays
between detection and report of cases.

As mentioned in previous studies [30], an increase or
decrease in incidence can be observed due to altered rou-
tines in culturing. However, no active interventions or
routine changes in the culturing tradition of IPD have
been executed during 1994-2004.

Our results may be biased only by factors that systemati-
cally change the temporal patterns (other than seasonal,
annual or long-term trends) of either influenza or IPD
diagnoses. One possibility of bias is therefore changes in
health-care seeking behavior and patient-sampling due to
holiday periods. We have therefore studied the effects of
adding a dummy variable for holiday seasons into the
model, with little effect on our results or conclusions.

Also, different strains of influenza may be of varying viru-
lence, generating an irregular amount of cases of invasive
disease. A further potential limitation of this study, is that
no age-stratified analysis is made, due to lack of age-spe-
cific data. Finally, since this is an epidemiological study,
based on two independently collected data sets, no con-
clusion can be made on an individual level concerning a
cause and effect of influenza.

Previous studies of the impact of influenza on pneumo-
coccal infections have been pursued along different lines.
Already during the Spanish flu pandemic of 1918 and
1919, causing 40 to 50 million lives[31], secondary pneu-
mococcal pneumonia was noted as an often-fatal compli-
cation[32,33]. Later surveys have more in detail studied
the temporal relation between the two infections[4,21-
24,4,21-24]. However, none of the studies on the tempo-
ral association take into account the simultaneous sea-
sonal occurrence of influenza and IPD, and the results
may therefore be confounded by any factor, which varies
by season. Talbot et al concluded in their study, a positive
correlation between laboratory isolates of influenza, in
adults (age >= 18 years) for 0-4 weeks lag. [25] However,
since influenza is a seasonal component, it is not clear if
the positive correlation is a result of direct influenza
impact or other seasonal components, with the same (sea-
sonal) frequency. In our study, we set influenza to an indi-
cator (0/1) variable, pointing out a start and an end of an
influenza season for each year. This approach allows us to
study the association to IPD in a less seasonal coinciding
way, since we only know if influenza is present or absent.
To our knowledge, our study is the first study to closely
model and quantify the association between influenza
and IPD, using a model that reduces influenza to a varia-
ble indicating its presence or absence, hence, not allowing
the seasonal increase of influenza to have an overall
impact on the result. Our study confirms the association
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between the two diseases even after taking into account
seasonal variation, and also shows that the strength of this
association is highly seasonal with a peak excess of IPD
morbidity  due to influenza in  January.

Finally, our findings, considering the association between
influenza and IPD morbidity, coincide, despite the fact
that two different approaches are used to define number
of excess IPD cases. Furthermore, the detection of a lag
between the influenza and IPD morbidity falls out to be
an important component in forecasting amount of IPD
cases, hence public health measures against influenza and
IPD are preferably considered together.

Appendix A
Models

In the models, denote number of IPD cases as in week t; as
y;- In Poisson regression models, the outcome y; is consid-
ered Poisson distributed with mean ., i.e. E[Y;] = 4; and
variance Var(Y;) = L;. Negative binomial models are equiv-
alent to the Poisson model (where Y;~ P,(1;)) in the esti-
mation of mean value but allow for a greater variance
(overdispersion). In these models, the assumption of
equal expected value and the variance E[y;|l;] = Var(y;|W;)
= W, was replaced by the assumption that the intensity

parameter |, is Gamma distributed, so that: u; ~ T'(a;,9).

o
Hence, expected value of W is: E[y;] = — and the variance
o

in Var(y,) = 6_2 The expected value for y, is then E[y;] =

E[Ely;|w]] = % and the variance is:

Varly] = E[Varly;|w]] + Var[E[y|w]] = %(1 + % ) The fac-

1 . .
tor 1+ 3 measures overdispersion. [23]

Now, when Poisson or negative binomial regression is
used, the logarithmic link function is applied so E[y,] =
log(w;), and the modeled response variable is:

log(u;) = log( < )= log(ct;) ~ log(3).

Baseline

In equations below, y; . is negative binomial distributed,
Yjk ~ r(0;,8) where j indicates weeks (1 to 52) and k years
(1to11).

http://www.biomedcentral.com/1471-2334/6/58

Appendix B

Pearson j?2 statistics

2
no. o
Pearsons Y2 statistics is defined as: X? = Z(u]
i=1

where y, is observed number of IPD cases and [l is the

model estimate. If the Person %2 statistic divided with the
number of observation is greater than 1, X2/n > 1, indi-
cates that overdispersion is present and that the negative
binomial model should be preferred over a Poisson
model. In all the calculated models the result was X2/n >
3, hence, the negative binomial approach was used.
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