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Abstract 

Background Since the emergence of SARS-CoV-2 (COVID-19), there have been multiple waves of infection and mul-
tiple rounds of vaccination rollouts. Both prior infection and vaccination can prevent future infection and reduce 
severity of outcomes, combining to form hybrid immunity against COVID-19 at the individual and population level. 
Here, we explore how different combinations of hybrid immunity affect the size and severity of near-future Omicron 
waves.

Methods To investigate the role of hybrid immunity, we use an agent-based model of COVID-19 transmission 
with waning immunity to simulate outbreaks in populations with varied past attack rates and past vaccine coverages, 
basing the demographics and past histories on the World Health Organization Western Pacific Region.

Results We find that if the past infection immunity is high but vaccination levels are low, then the secondary 
outbreak with the same variant can occur within a few months after the first outbreak; meanwhile, high vaccination 
levels can suppress near-term outbreaks and delay the second wave. Additionally, hybrid immunity has limited impact 
on future COVID-19 waves with immune-escape variants.

Conclusions Enhanced understanding of the interplay between infection and vaccine exposure can aid anticipation 
of future epidemic activity due to current and emergent variants, including the likely impact of responsive vaccine 
interventions.
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Background
The global spread of SARS-CoV-2, causing COVID-
19 disease, has fundamentally changed society. Multi-
ple epidemic waves have been experienced, beginning 
with the wild-type virus in early 2020, and followed by 
the emergence of variants such as Alpha (B.1.1.7), Delta 
(B.1.617.2), and more recently Omicron (B.1.1.529, sub-
variants BA.1, BA.2, BA.3, BA.4, BA.5 and descendent 
lineages) [1]. In the absence of specific preventive or dis-
ease modifying agents, the only initially effective meas-
ures to reduce the impact and burden of COVID-19 
were case and contact management, restrictions to limit 
the number of social interactions and personal protec-
tive behaviours to reduce the per-contact likelihood of 
transmission. The initial hope was that vaccines might 
provide long lasting immunity against infection, with 
definitive impacts on transmission. However, while effi-
cacy against severe disease appears to be relatively robust 
and long lasting, efficacy against infection acquisition 
and onwards transmission are lower and shorter lived—
especially against the Omicron variant [2]. In response to 
repeated epidemic waves in highly immune populations, 
one or more booster doses have been recommended for 
sustained protection [3]. Omicron and its subvariants 
have caused high levels of exposure in multiple popula-
tions world-wide, even in highly vaccinated populations 
[4], and has led to complex “immune landscapes” across 
the world with varying levels of so-called “hybrid immu-
nity” [5] in vaccinated and infected populations, consist-
ing of immunity derived from both past infection and 
past vaccination.

Both infection and vaccination provide immunity boost-
ing effects to individuals [6–13] and indirect benefits to 
others in the population, regardless of vaccination sta-
tus, through reduction in onwards transmission [14]. This 
immunity directly reduces the risk of infection, and, if 
infection does occur, reduces disease severity and lowers 
onward transmission. Neutralising antibody titres, which 
are boosted by exposure to infection and/or vaccination, 
are correlated with efficacy against clinical endpoints of 
infection, symptoms and severe disease outcomes [15–17]. 
However, infection and vaccination can give different levels 
of protection [18], which are variable across demograph-
ics (especially with respect to age) [19]. Increased breadth 
and duration of antibody responses have been observed in 
individuals who have been both infected and vaccinated, 
termed “hybrid immunity” [20–25]. Crucially though, all 
forms of immunity decay over time, with additional com-
plexity arising from observations of differential antibody 
waning following infection, vaccination or a combination of 
the two [26, 27]. Furthermore, the recent Omicron subvari-
ants have shown immune escape in relation to immunity 
derived from past infections and vaccinations [2, 28–31], 

and even infection from earlier Omicron subvariants (BA.1, 
BA.2) has been shown to have reduced protection against 
later Omicron subvariants (BA.4, BA.5) [32].

Overall, populations have hybrid immunity,  with  
multiple groups of individuals with different vaccina-
tion and past-infection statuses. It is a challenging pro-
cess to synthesise information about individual-level 
immunity to population-level protection and make pre-
dictions about the severity of future COVID-19 waves 
and optimisation of primary and booster vaccine allo-
cation [33–37]. Modelling has been used to support 
decision making around the world in regards to man-
aging COVID-19 [38–40]. It has been used extensively 
to compare different vaccination strategies [41–43], 
but many either do not include waning of immunity 
[44], or do not take a hybrid-immunity approach [45]. 
However, the inclusion of both of these factors is key in 
understanding the combined population-level effect of 
vaccination and prior exposure upon future transmis-
sion dynamics [34, 46]. Furthermore, two populations 
with apparently similar levels of past-infection and vac-
cination coverage could still have different responses, 
as epidemic history, including the SARS-CoV-2 
strain(s) and exposure sequence, also play an important 
role [47]. Hence, different populations and regions with 
unique epidemic histories require individual analysis.

In this study, we focus on dynamics of immunity in 
the World Health Organization (WHO) Western Pacific 
Region (WPR). Prior to the rollout of vaccination, the 
WPR region had low seroprevalence compared to other 
regions such as Europe [48]. As such, infection-derived 
immunity within this region is now largely a result of the 
recent Omicron wave, with relatively few infections caused 
by previous variant strains, unlike the populations with 
high prior Delta exposure pre-Omicron [34, 44]. Hence, 
our focus will be on analysing scenarios where a popula-
tion’s past infection-derived immunity is due to Omicron.

We use an agent-based (individual-based) model of 
COVID-19 to consider how combinations of vaccina-
tion coverage and prior Omicron infection exposure 
can protect a population from future near-term Omi-
cron waves, in the context of fixed public health meas-
ures (or lack thereof ), no TTIQ (test, trace, isolate, 
quarantine), and with a constant vaccination capacity. 
We focus on the interplay between younger and older 
population demographics—as a proxy for two popula-
tions with different high-risk group sizes—along with 
a range of vaccination coverages and prior infection 
rates. Understanding hybrid immunity is necessary 
to develop efficient allocation of vaccine resources to 
achieve equity of outcomes across different popula-
tions with unique hybrid immunity statuses, and will 
also allow us to understand larger-scale future societal 
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impacts, such as worker absenteeism and overloaded 
health systems. Given that past infection and vacci-
nation provide unequal levels of immunity, we aim to 
identify the most advantageous strategies to protect 
populations from infection and severe disease out-
comes in future, taking into account the current popu-
lation immunity profile.

Methods
The overall simulation procedure is comprised of an 
infection transmission/dynamics model that is linked to 
a mechanical agent-based model (cf. Refs.  [37, 49]  and 
Conway E, Lydeamore M, Walker C, et al: Optimal tim-
ing of booster doses in a highly vaccinated population 
with minimal natural exposure to COVID-19, in prepara-
tion). Outputs from this model feed into a clinical path-
ways model. The simulation process is depicted in Fig. 1, 
with individual model components described in more 
detail below.

Agent‑based transmission model
We use the agent-based COVID-19 model of Conway 
et al. [37, 49]. In the agent-based model, each individual 
has a specific age, unique neutralising antibody titre, 
vaccination history and own compartment label (sus-
ceptible/exposed/infected). At the beginning of each sim-
ulation, all individuals have zero neutralising antibody 
titre. An individual’s neutralising antibody titre can be 
boosted due to infection (starting from day 225) and/or 
vaccination (starting from the first day) and decay over 
time, with different levels of boosting depending on vac-
cine product and infection variant.

In the model, infection transmission occurs due to con-
tact between infectious and susceptible individuals, which 
is dependent on input contact matrices and the individu-
als’ ages. Once infected, the model randomly samples 
to determine whether an individual is asymptomatic or 
symptomatic, as well as generating when they become 
infectious, time of symptom onset, time of isolation (if 
isolation or quarantine is included), and time of recovery, 
based on parameter values in Table 1. In each simulation, 
this information can be exported as a line list of infections.

Clinical pathways model
We use the stochastic COVID-19 clinical pathways 
model by Conway et  al. [37, 49]. The clinical pathways 
model relates demographic information and neutralising 
antibody titre to clinical outcomes. For each symptomatic 
infection occurrence, the clinical pathways model takes 
in age and neutralising antibody titre at time of infection 
of the infected person and generates a clinical trajectory 
for each symptomatic infection, including whether the 
individual will require hospital admission, or will die.

Note that the clinical pathways model is independent 
of the main agent-based model described above, which 
allows for greater flexibility in the overall simulation 
process and also allows the clinical pathways model to 
be used for multiple epidemic models. However, due 
to this independence, it is possible that patients who 
die, according to the clinical pathways model, remain 
in the agent-based simulation. Due to the low number 
of deaths, relative to infections, this should not have 
major effect on the two models’ outcomes [37, 49].

Fig. 1 Diagram of overall simulation procedure. The core of the simulation uses an agent-based model with an underlying infection transmission 
model, with multiple primary inputs including immunological parameters and scenario-demography setups. The outputs are then fed into a clinical 
pathways model that produces clinical outcomes for infected individuals
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Immunological model
Neutralising antibodies are one of the many biomarkers 
associated with COVID-19 immunity [18, 52, 53], so we 
use them to regulate each agent/individual’s interaction 
with the SARS-CoV-2 virus, including each individual’s 
level of protection against infection and severe clinical 
outcomes [15, 16, 50]. In particular, we use the model 
from [15, 16] to use neutralising antibodies to deter-
mine each individual’s level of protection against infec-
tion, symptomatic disease, onward transmission given 
breakthrough infection, hospitalisation and ICU admis-
sion, and death. The antibodies follow exponential decay 

over time, with our model assuming that the decay rate 
is the same across all forms of initial antibody boosting 
(whether vaccination or prior infection).

When an antibody boosting event occurs, the individ-
ual gets a new antibody titre, a0 , that is sampled from:

where µx
j  is the mean neutralising antibody titre against 

strain x (Delta or Omicron) after boosting process j 
(infection or vaccination), and σ 2 is the variance of 
antibodies across the population (Table   1). Note that 

(1)log10(a
0) ∼ N (µx

j , σ
2),

Table 1 Model parameters. These parameters were derived by Conway et al. [37, 49] using a range of studies and the package [50], 
with further details available in Ref. [51]. Note that the age brackets for probabilities of symptomatic infection, relative infectiousness 
once infectious, and susceptibility to becoming infected upon contact with an infected individual correspond to [0, 5, 10, 15, 20, 25, 30, 
35,40, 45, 50, 55, 60, 65, 70, 75, 80]

Parameter: description Value

µ0
AZ1 : log10 of the mean neutralising antibody titre after the first dose 

of AstraZeneca (no infection) [used in Eq. (1)]
-0.530

µ0
AZ2 : log10 of the mean neutralising antibody titre after the second dose 

of AstraZeneca (no infection) [used in Eq. (1)]
-0.120

µ0
PB2 : log10 of the mean neutralising antibody titre after the second dose 

of Pfizer (no infection); also the mean titre after one AstraZeneca dose 
and one infection [used in Eq. (1)]

0.154

µ0
B : log10 of the mean neutralising antibody titre after the first mRNA 

booster dose (both with and without infection); also the mean titre 
after two AstraZeneca doses and one infection [used in Eq. (1)]

0.323

µ0
U : log10 of the mean neutralising antibody titre after infection whilst 

unvaccinated [used in Eq. (1)]
0

σ : standard deviation of the log10 of neutralising antibodies 
across the population

0.465

ch : midpoint of logistic function Eq. (5) of protection against hospitalisa-
tion

-1.22

cd : midpoint of logistic function Eq. (5) of protection against death -1.18

cξ : midpoint of logistic function Eq. (5) of protection against acquisition -0.472

cτ : midpoint of logistic function Eq. (5) of protection against transmission 0.0295

cq : midpoint of logistic function Eq. (5) of protection against symptomatic 
disease

-0.644

log (k) : governs the logistic curve steepness relating antibodies to protec-
tion against disease outcome [c.f. Eq. (5)]

1.69

ka : decay rate of neutralising antibodies [c.f. Eq. (2)] 0.00824

log10 (fOmicron) : log10 of the fold change in neutralising antibody titre 
between Delta and Omicron (BA1-like) [c.f. Eq. (4)]

-0.692

log10 fOmicron-escape  : log10 of the fold change in neutralising antibody 
titre between Delta and the BA4/5-like immune escape variant [c.f. Eq. (4)]

-1.18

baseline age-group specific probability of symptomatic infection 
if infected

[0.29, 0.29, 0.21, 0.21, 0.27, 0.27, 0.33, 0.33, 0.4, 0.4, 0.49, 0.49, 0.63, 0.63, 0.69, 
0.69, 0.69]

baseline age-group specific relative infectiousness once infected [0.799, 0.688, 0.675, 0.756, 0.918, 0.965, 0.947,0.932, 0.934, 0.940, 0.954, 0.982, 
1.0, 0.998, 0.990, 0.974, 0.944]

baseline age-group specific susceptibility to becoming infected 
upon contact with an infected individual

[0.301, 0.367, 0.433, 0.527, 0.764, 0.924, 0.983, 0.974, 0.932, 0.915, 0.929, 
0.962, 1.0, 0.972, 0.882, 0.824, 0.802]

R0 ratio between the original Omicron variant (BA1/2-like) and the BA4/5-
like immune escape variant (the added transmissibility of the immune 
escape variant)

1.3
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infection prior or post vaccination results in the same 
titre. The highest  neutralising antibody titre boosting 
occurs with the booster dose, and does not rise with 
extra infections. There is an upper limit on titre, which is 
equivalent to either two vaccinations and an infection, or 
three vaccinations. (For further details on how the titres 
for determined for combinations of infection and vacci-
nation, see Table 1 of [49].) We also assume that the neu-
tralising antibodies decay exponentially over time t after 
an exposure event:

Note that there is an additional scaling as many of 
the parameters in Table 1 are for strain 0, i.e. the Delta 
strain. To convert to neutralising antibodies against the 
Omicron strain, the fold change fOmicron is used:

To convert an individuals’ Omicron BA.1 titres, 
aOmicron , to titres against the BA.4/5-like variant:

The immunological model parameters are drawn from 
Refs. [37, 49, 50] (Table 1). The model parameters broadly 
follow the characteristics for the Omicron BA.1 subtype. 
We include two additional parameters in the case of an 
Omicron BA.4/BA.5-like immune escape variant: 1) 
R0 ratio between the original Omicron variant (BA1/2-
like) and the BA4/BA5-like immune escape variant to 
account for an inherent increase in transmissibility; and 
2) log10

(

fOmicron-escape

)

 to account for an approximately 
three-fold reduction in neutralising antibody protection 
derived from preceding immunising exposures [50, 54].

The relationship between neutralising antibody titre 
ai of an individual to protection against some disease 
outcome ρα (hospitalisation, death, acquisition etc.) is 
[37, 49]:

where k determines the steepness and cα corresponds 
to the midpoint of the logistic function for a particular 
disease outcome ( α = hospitalisation, death etc...) (see 
Table 1). The protection against disease outcomes is then 
used to calculate the probabilities of obtaining a disease 
outcome, i.e., the probability of being infected, of being 
hospitalised, and so forth, with the baseline probabilities 
given in Table 1. See Conway et al. [37, 49] and the sup-
plementary code base for more details.

(2)log10 ai(t) = log10(a
0
i )−

ka

log(10)
t.

(3)µOmicron
j = µ0

j + log10(fOmicron).

(4)log10(a
Omicron-escape) = log10(a

Omicron)− log10(fOmicron)+ log10(fOmicron-escape).

(5)ρα =
1

1+ exp
[

−k
(

log10 (ai)− cα
)] ,

Fixed input parameters
In the WPR scenarios we consider, the following com-
ponents are fixed:

Vaccine type: We assume that all primary doses are 
ChAdOx1 nCoV-19 (AstraZeneca) and booster doses 
are BNT162b2 (Pfizer/BioNTech).

No TTIQ (Test, Trace, Isolate and Quarantine). This 
means there are no public health measures in these 
scenarios.

Timeline: We assume a fixed schedule for vaccina-
tion and the seeding of infection (depicted in Fig. 2).

There are three vaccination stages that take 26 weeks 
each, i.e., 6 months each: the first dose stage, the sec-
ond dose stage, and the mixed booster and new primary 
course stage. In the first stage, first doses are given to 
the allocated population, and in the second stage, the 
second dose is given to the same groups. Within the first 
and second stages, the 65+ age group always gets their 
first dose or second dose first, followed by randomly 
assigned vaccinations among the 5− 64 age group. At 
the end of the second stage, V% of the population have 
received the primary course, where V = 20, 50, 80 . In 

the third stage, 80% of the fully vaccinated population 
receive a booster dose, while remaining available doses 
are given out as new primary doses. An example of this 
is given in Fig. A4 in the Supplementary Material 1. The 
duration of 6 months is based on the general princi-
ple of having 4–6 months between primary doses and 
booster doses [55].

We seed two infection waves with 100 infections each: 
one at time t = 225 (approximately the  32nd week, or 
over seven months), such that the first wave is largely 
over by the end of the second vaccination stage, and one 
at time t = 450 , where protection from the first wave has 
waned enough such that a second wave could possibly 
occur. Any infection that occurs before t = 450 is marked 
as a “past” infection, while anything after t = 450 (and 
before t = 650 ) is marked as a “near-future” infection.

The first infection wave timing is based on what 
happened in the Western Pacific Region: COVID-19 
vaccines were available in early 2021 (for example, Feb-
ruary 2021 in Australia and Japan [56, 57]; and April 
2021 in Samoa and Papua New Guinea (to members 
of the public) [58, 59]); meanwhile, the Omicron vari-
ant emerged in November 2021 [60]. That is, there was 
at least seven months between the start of vaccination 
before the Omicron variant arrived. This first wave 
ensures that our simulated populations have “past” 
hybrid immunity by t = 450.
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Note that we end our analysis at time t = 650 , which 
is approximately three months after the final vaccination 
stage finishes. This allows time for the earlier vaccination 
to take some effect. We do not run simulations for any 
extra time until all second waves are finished in situations 
where the second seeding does not spark a second wave 
immediately. This is because if we do continue to run the 
simulation, immunity will continue to wane, and in some 
situations, we would see a third wave. Furthermore, we 
would expect that some populations would continue a 
fourth vaccination stage and so forth. In the Supplemen-
tary Material Fig. A9, we explore ending the analysis ear-
lier versus later. We find that if we end the analysis too 
early, there is little differentiation between different vac-
cination coverages, while if we end the analysis later, our 
conclusions do not change.

Scenarios
The scenarios and demographics that we change across 
different simulations are as follows.

Population age demographics: see Fig. 3a and b. We 
generate populations with 100,000 people. We consider 
“older” and “younger” populations, which are derived 
from averaged age-proportions across the majority of 
countries in the Western Pacific regions, using the pop-
ulation data acquired through  UN World  Popul ation  
Prosp ects [61] for the year 2021. We defined “older” 
countries as those with an OADR ≥ 15 and “younger” 
countries as having an OADR ≤ 12 , where OADR is the 
old-age to working-age demographic ratio, which we 
calculate as a ratio between the +65 year old popula-
tion and the 20-64 year old population. The individual 

country-level data used can be seen in Figs. A1 and A2 of 
the Supplementary Material 1.

Additionally, each older/younger demographic has 
a different contact matrix, which governs the social 
mixing (and thus infection spread) in the model. To 
derive some exemplar contact matrices, we used aggre-
gated contact matrices from “older” ( OADR ≥ 15 ) and 
“younger” ( OADR ≤ 12 ) countries that could be found on 
socia lcont actda ta. org [62–72] (where for “older” coun-
tries we included Belgium, Finland, France, Germany, 
Hong Kong, Italy, Luxembourg, Poland; and “younger” 
included Viet Nam and Zimbabwe. These countries 
fell into the appropriate OADR values and had contact 
matrix values for all the age-groups we required.)

Vaccination coverage: see Fig. 3c, d, e, and f. The vac-
cine allocation broadly follows WHO guidelines [3], 
which recommends prioritising the vaccination of older 
and higher-risk groups. Aside from the zero-vaccina-
tion scenario, either 20% , 50% , or 80% total vaccination 
coverage is achieved at the end of the second stage, i.e. 
t = 364 , reflecting differing levels of vaccine access/
health sector capacity. At the lower vaccination rate 
of 20% , we first allocate doses such that 80% of the 60+ 
age group are fully vaccinated by the end of the first two 
stages. At the higher vaccination rates of 50% and 80% , we 
allocate initial doses such that 95% of the 60+ age group 
are fully vaccinated by the end of the first two stages—
a fully vaccinated cohort is unrealistic. The remaining 
available doses in the first two stages are then equally 
(proportionately) allocated to the 5–59 age groups. In the 
third stage, 80% of all vaccinated individuals are allocated 
booster doses (no prioritisation of any age groups), with 

Fig. 2 Timeline of vaccination schedule and infection seedings with examples of infection time series. There is a vaccination rollout that occurs 
in three consecutive stages, starting at t = 0 , t = 182 , and t = 364 and ending at t = 546 . The first wave and the second wave are generated 
by randomly seeding 100 infections in the population (which could occur due to a super-spreader event, for example) at times t = 225 and t = 450 . 
The example time series are for a second wave due to the same variant as the first wave

https://population.un.org/wpp/DataQuery/
https://population.un.org/wpp/DataQuery/
http://www.socialcontactdata.org/
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the remaining doses given equally across the age-groups 
to unvaccinated individuals. An example of this is given 
in Fig. A5 of the Supplementary Material 1.

Second wave variant type: We considered scenarios 
with either a second wave caused by the same Omicron 
variant as the in the first wave (default scenario), or with a 
new immune escape variant. The variant in the first wave 
is broadly referable to the characteristics of the Omicron 
BA.1 variant. The immune escape variant is Omicron 
“BA.4/5-like”, as it is currently one of the variants of most 

global concern. The immunological parameters were 
determined using the methods described in   [50] (also 
see the methods described in [37, 49]).

Inherent transmissibility of the variant in that par-
ticular population: Different countries do not have the 
same Reff  or R0 for the same virus. Furthermore, changes 
in social mixing patterns, due to social distancing meas-
ures for example, will change the population level of 
transmission. Therefore, rather than fixing the transmis-
sibility across all simulations, we vary it ( R0 ∈[0.85, 0.9, 

Fig. 3 Scenarios considered: a exemplar“younger” population demographics, b “older” population demographics (see Appendix A of the 
Supplementary Material 1 for the construction of these exemplar populations), c 20% vaccination coverage, d 50% vaccination coverage, e 
80% vaccination coverage, where the coverage value corresponds to primary vaccination coverage by time t = 364 . Note that c, d, e detail 
the proportions in the younger population; the proportions in the older population are similar
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0.95, 1., 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 
1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2.0, 2.05]), 
which gives rise to different attack rates in the popula-
tion. We assume that the populations act the same dur-
ing both waves (at whatever level of restrictions they may 
have). If the second wave is due to the same COVID-19 
variant, then the transmissibility remains the same, i.e., 
within any individual simulation, the level of transmis-
sion is constant over time. If the second wave is due to an 
immune-escape variant with increased transmissibility, 
then the original transmissibility is multiplied up by the 
value given in Table 1.

For each scenario and set of input parameters, we ran 
10 simulations, each producing a single infection history 
with information about the number and times of infec-
tion and vaccinations for each individual in the popula-
tion. From each individual simulation, our stochastic 
clinical model produces five alternative clinical path-
way histories, with information about number of infec-
tions, severe cases, hospital admissions, ICU admissions, 
and deaths per day. We aggregated the total cases, ICU 
admissions, and deaths per day for each simulation. 
We calculated attack rates as the number of infections 
divided by the population size. The “past attack rate” 
includes infections between day 0 and day 449 inclusive, 
while the “future attack rate” includes infections on days 
450 to 649 inclusive.

Results
Figure  4 presents results for the scenarios where both 
waves are due to the same Omicron BA.1-like variant. Fig-
ure 5 presents results for the case with the immune-escape 
variant during the second wave. Extended figures are given 
in Appendix A.3 of the Supplementary Material 1.

Reinfection with the same Omicron BA.1‑like variant
In the absence of vaccination, immunity from infection 
alone wanes rapidly enabling a second wave. Assum-
ing that the variant characteristics are unchanged, we 
observe a consistent linear relationship between the size 
of the first and second wave, especially at transmissibil-
ity values that lead to a first-wave attack rate of 50% or 
above. At high attack rates, the immunity derived from 
the first wave only gives a modest constraint on the size 
of the second wave (for example, a past attack rate of 80% 
during the first wave leads to an attack rate of 60% in the 
second wave) (Fig. 4 a, b).

There is little difference in the protection provided 
by different vaccination coverage levels when the past 
attack rate is 50% or lower. The past attack rate size is 
largely determined by the inherent transmissibility of the 
Omicron variant in the population. This means that for 
a lower past attack rate, the virus is less transmissible in 

that population, due to some inherent properties of the 
population. In countries with lower transmission, high 
vaccination is not as important provided that only the 
same variant is in circulation (Fig. 4).

For scenarios where the past attack rate is higher 
than 50% , we observed that different vaccination cover-
age levels have noticeable effects. Increasing vaccina-
tion coverage from 20% to 50% can delay the next wave 
in the immediate future. If vaccination coverage is only 
20% then a high past attack rate is insufficient to ensure 
a low future resurgence of infections with the same vari-
ant. This is most likely due to the high intrinsic disease 
spread which caused the high past attack rate and simi-
larly caused the high near-future attack rate, as well as 
the short-lived nature of immunity derived only from 
natural infection.

We observed little difference in total infections at vac-
cine coverage levels between 50% and 80%. This could be 
due to the fixed assumption that for each of these cov-
erage scenarios, takeup within the 65+ age group is the 
same (at 95% in-group coverage). In terms of more severe 
clinical outcomes such as death, older populations have 
consistently worse clinical outcomes than the example 
younger population. Furthermore, a very high vaccina-
tion rate of 80% does have noticeably better clinical out-
comes than 50%, especially in older populations. Since 
the high-risk coverage is the same in both scenarios, this 
indicated that there is benefit to vaccinating low-risk 
groups (Fig. 4 c, d).

Reinfection with an Omicron BA4/BA5‑like immune escape 
variant
In general, we found that for scenarios where the sec-
ond wave is dominated by the Omicron BA.4/BA.5-like 
immune escape variant, the previously observed protec-
tive effects of vaccination against the second wave were 
substantially reduced, as the efficacy against transmission 
and severe disease is impacted by the immune escape. 
For these immune escape scenarios, we observed a linear 
relationship between past attack rate and future attack 
rate. Furthermore, future attack rates are often higher 
than past attack rates (Fig. 5 a, b).

We found that older populations have slightly greater 
near-future attack rates given the same past hybrid 
immunity as younger populations, but overall we did not 
observe a substantial difference between peak sizes, simi-
lar to the previous scenarios where transmission is domi-
nated by a single viral strain. For severe outcomes such 
as death in the second wave, we found that the protec-
tive effect of vaccination was substantially reduced, with 
much smaller differences in clinical outcomes between 
different vaccination coverages. Once again, older pop-
ulations (i.e. populations with larger high-risk groups) 
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experienced consistently worse clinical outcomes than 
the younger populations (Fig. 5 c, d).

Discussion
The Omicron variant of COVID-19 has spread across the 
world. Unlike previous variants, Omicron has increased 
transmissibility and immune escape [2, 28–31], meaning 
that both vaccination and past infection confer a lower 
level of protection against Omicron (re)infection. We 
considered different populations with either ‘older’ or 

‘younger’ demographics and with varying existing hybrid 
immunity. These populations were then subjected to a 
second wave of either the same prior variant (BA.1 like) 
or a different immune escape variant (BA.4/BA.5 like). 
We find that high vaccination coverage makes a notice-
able difference in reducing the number of infections and 
severe outcomes in populations. Additionally, a popula-
tion with a high past attack rate—reflecting a society with 
certain mixing and environmental factors that increase 
disease spread—is likely to have a high future attack 

Fig. 4 Near-future outcomes given past immunity. a Younger population, near-future attack rate; b Older population, near-future attack-rate 
(the diagonal line represents where past and near-future attack rates are equal); c Younger population, near-future deaths; d Older population, 
near-future deaths. Note that past attack rate is calculated between t ∈ (0, 450) . Past attack rate is dependent on transmission potential, which 
is different for various simulations, reflecting different populations’ intrinsic transmission. Near-future attack rate and near-future deaths are 
calculated between t ∈ [450, 650) . Note that we have only included simulation results in which the past attack rate is between 20% and 80%
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rate and will benefit from higher vaccination coverage. 
In contrast, if populations with a low past attack rate—
reflecting different intrinsic society mixing and limited 
disease spread, including potential public health meas-
ures—continue to behave the same going forward, then 

high vaccination does not have high impact against a sec-
ond wave.

We find that higher vaccination coverage is more 
important for older populations, that is, populations 
with larger high-risk groups. Even if older and younger 

Fig. 5 Near-future attack rate and deaths given past immunity, for a second wave due to a BA.4/BA.5-like immune escape variant. The diagonal 
line represents where past and near-future attack rates are equal. Note that we have only included simulation results in which the past attack rate 
is between 20% and 80%
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populations have the same future wave size—i.e. in terms 
of infection numbers—the older populations consistently 
have worse clinical outcomes. Vaccination is important 
in reducing severe outcomes, and thus is important in 
populations at higher risk of severe outcomes. This work 
highlights that populations with large high-risk groups 
must do more to protect themselves in order to achieve 
the same outcomes compared to those populations with 
smaller high-risk groups.

We also found that high vaccination coverage can delay 
the emergence of a second wave. This delay is important 
because a longer time between waves allows more time 
to vaccinate populations, fewer infections and deaths 
across the same time frame, less economic disruption, 
and so forth. If there is a sufficient interval between cam-
paigns, a fourth booster dose may be able to mitigate 
against some of these outcomes in the older population 
by “resetting” short term protection to a higher level, but 
that has not been simulated here. For example, Hogan 
et al. [34] created a model to predict how protection from 
past infection, vaccination and boosting declines over 
time. They found that in partially vaccinated populations, 
(first) boosters should be preferentially given to high-
risk/older groups instead of giving new primary doses to 
low-risk/younger age groups; considering waning immu-
nity, we can expect this reasoning to apply for second and 
subsequent boosters.

A strength of our study is that using our agent-based 
transmission model, we have been able to systematically 
model complex exposure histories for various popu-
lations with differing overall levels of waning hybrid 
immunity and compare how different populations fare 
under various scenarios. As vaccinations and exposures 
increase over time, the hybrid immunity landscape of 
populations will become more complex, further increas-
ing the utility of models that have the ability to capture 
diverse exposure and vaccination histories. Many of the 
earlier studies did not include flexible hybrid immunity 
arrangements and/or did not include waning immunity 
or multiple reinfections (e.g. [43–45]), which here we 
show is key to the occurrence, size and timing of the sec-
ond wave. While we did not include heterologous vac-
cination schedules, such as was modelled in   [73], our 
modelling framework has the ability to support these 
scenarios.

There are several limitations to our study. First, our 
model did not have two variants circulating at the same 
time, instead using a sharp change point where all 
new infections following a certain time were with the 
immune escape strain. However, given that new vari-
ants have historically replaced currently circulating vari-
ants over relatively short time periods [74, 75], we do not 
envisage this would greatly change our results. Second, 

we did not consider the breadth of antibody response; 
we assume that while natural infection and vaccination 
boost antibodies by different amounts, the model then 
wanes both at the same rate instead of different rates. 
The next generation of vaccines will very likely be biva-
lent, as they are more broadly cross reactive and pro-
vide more durable protection. With all the increasing 
breadth of protection becoming important, a single anti-
body value may no longer be sufficient, instead requir-
ing a multidimensional approach. Thirdly, in the absence 
of robust population level evidence to the contrary, our 
model assumes that neutralising antibody titres are the 
only proxy correlate of protection against both infection 
and clinical outcomes. However, we expect there exist 
other correlates of protection [76, 77], and as evidence 
regarding these mechanisms accrues, we will incorpo-
rate them into future model development. Additionally, 
we could improve the cohesion between the agent-based 
transmission model and the clinical pathways model, 
for example by embedding the clinical model within the 
transmission simulation, to avoid the situation where 
dead agents continue to become infected and transmit 
disease.

Conclusions
Our study clearly shows how waning immunity and 
emergence of vaccine escape variants limits the impact 
of COVID-19 vaccines against transmission. The ben-
efits of vaccination and past infection derived protection 
against COVID-19 disease depend critically on many 
factors, including demography, health systems capac-
ity, vaccine efficacy, and breadth of protection, especially 
against new variants. Protection against severe disease is 
more robust, with achievable gains depend on underly-
ing population demographics and risk. Ideally, vaccines 
would be allocated after assessing hybrid immunity at 
both the individual and population level in order to 
maximise the protection against future waves especially 
if vaccine stocks are limited. Our results suggest that 
populations with low vaccination coverage and high past 
infection rate should still consider vaccination if public 
health measures are not enforced or social mixing is not 
reduced, with particular emphasis on protecting those 
at higher risk, such as older age groups. In addition, our 
work suggests that populations with past high infec-
tion rates will likely continue to have high future infec-
tion rates, if nothing were to change. In general, given an 
approximate age structure, past attack rate and past vac-
cination coverage, our work can estimate the real world 
effects of the next epidemic wave, which can then be used 
for future planning.

The hybrid immunity landscape will only become 
increasingly complex as time goes on: with more 
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circulating variants and with more vaccinations and 
more unique and individual exposure histories. How 
this can be robustly incorporated into mathematical 
models—especially in cases of limited available data—
will be an ongoing challenge. As we move from the ini-
tial pandemic stage of COVID-19 to ongoing endemic 
transmission, we need tailored responses, sustainable 
long term protection and vaccination schedules to pro-
tect those at risk of severe disease and have equity of 
outcomes going forward. The role of future vaccines for 
resilience to ‘endemic’ disease and response to variants 
of concern remains to be determined for each individ-
ual country context. Our flexible framework is capable 
of considering different country contexts by inputting 
different age distributions, vaccination schedules, con-
tact matrices and other key parameters and thus can 
assist in determining the relative benefits of vaccines in 
different populations going forward.
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