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Abstract
Background: Human behavior influences infectious disease transmission, and numerous
"prevalence-behavior" models have analyzed this interplay. These previous analyses assumed
homogeneously mixing populations without spatial or social structure. However, spatial and social
heterogeneity are known to significantly impact transmission dynamics and are particularly relevant
for certain diseases. Previous work has demonstrated that social contact structure can change the
individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination
policy when the corresponding homogeneous mixing model predicts that eradication is impossible
due to free rider effects. Here, we extend this work and characterize the range of possible
behavior-prevalence dynamics on a network.

Methods: We simulate transmission of a vaccine-prevetable infection through a random, static
contact network. Individuals choose whether or not to vaccinate on any given day according to
perceived risks of vaccination and infection.

Results: We find three possible outcomes for behavior-prevalence dynamics on this type of
network: small final number vaccinated and final epidemic size (due to rapid control through
voluntary ring vaccination); large final number vaccinated and significant final epidemic size (due to
imperfect voluntary ring vaccination), and little or no vaccination and large final epidemic size
(corresponding to little or no voluntary ring vaccination). We also show that the social contact
structure enables eradication under a broad range of assumptions, except when vaccine risk is
sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine
to be effective.

Conclusion: For populations where infection can spread only through social contact network,
relatively small differences in parameter values relating to perceived risk or vaccination behavior at
the individual level can translate into large differences in population-level outcomes such as final
size and final number vaccinated. The qualitative outcome of rational, self interested behaviour
under a voluntary vaccination policy can vary substantially depending on interactions between
social contact structure, perceived vaccine and disease risks, and the way that individual vaccination
decision-making is modelled.
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Background
Historically, infectious diseases have been a great threat to
human security, causing enormous morbidity and mortal-
ity [1]. In the 20th century approximately 2.3 million peo-
ple died on average in wars and conflicts per year [2], but
currently infectious diseases are killing more than seven
times that number of people annually [3]. For this reason,
through use of mathematical models, researchers have
been trying to better understand the transmission and
control of infectious diseases. Mathematical modeling
dates back to the 18th century when, in order to study the
effectiveness of variolation, Daniel Bernoulli formulated a
model for smallpox in 1760 [4]. Due perhaps to a lack of
understanding of the mechanisms of the spread of infec-
tious diseases, the pace of development of mathematical
epidemiology slowed down until the beginning of the
20th century [5-7] though it started growing drastically in
the middle of the same century [5,7].

Models of disease dynamics often implicitly assume that
human behaviour does not change or have an impact on
disease transmission. However, individuals may in fact
change their behavior during an outbreak according to the
changes in their perceived risk of being infected, and their
decisions will in turn have consequences at the popula-
tion level [5]. Incorporating behavior into models of dis-
ease transmission is therefore very important in some
cases since it can significantly influence infection dynam-
ics. Consider, for instance, the effect of introducing a vol-
untary vaccine on infection dynamics: individuals'
decision to vaccinate or not likely depends on their per-
ceptions of risk from the vaccine and the infection. Vacci-
nation protects not only those who are vaccinated but also
others in the population who are, due to herd immunity,
less likely to be infected. Hence, the level of population
immunity and therefore the size of an outbreak is collec-
tively determined by individual decisions [8]. As disease
prevalence rises, more people will choose to vaccinate. On
the other hand, as disease prevalence goes down, people
will not favor vaccination allowing the susceptible
number of individuals in the population to increase until
the disease starts to spread again. Analysis of such behav-
ior-infection models have demonstrated in many cases
that if individuals act in their own self interest, eradication
of a vaccine preventable disease through voluntary vacci-
nation without economic incentives is difficult or impos-
sible [9-12]. This effect has been variously described in
terms of classic game theoretical paradigms such as the
"Free Rider Problem", the "Tragedy of the Commons" and
the "Prisoner's Dilemma". Game theory has also been
applied to vaccination and those studies generally came to
similar conclusions [8,13-18]. However, smallpox is the
first and only vaccine preventable disease to be globally
eradicated under voluntary vaccination policies in many
jurisdictions, and without any economic incentives to vac-

cinate [19]. Considering the predictions of the previous
models, how was this possible?

Models that assume a homogeneously mixing population
have predictive value for many diseases [20] and have
allowed researchers to study many characteristics of an
epidemic, such as the existence of threshold values for the
spread of an infection [21] and the asymptotic solution
for the density of infected people [6,22]. Homogeneous
mixing models imply that a susceptible person is equally
likely to acquire infection from any infectious person in
the population [6,7,23]. This assumption simplifies anal-
ysis and is a good approximation for highly transmissible
diseases, such as those that spread through aerosol drop-
lets. However, epidemics of close contact infections occur
within populations made up of individuals who mostly
spend time with close associates and do not mix with
other individuals in the population completely at ran-
dom. Therefore, the homogeneous mixing assumption is
not very realistic for diseases that are spread through close
contact.

Many infectious diseases, including close contact infec-
tions, can be modeled using network models, in which
individuals are represented as nodes and contacts between
individuals are edges connecting the nodes [24-28]. Con-
tacts between individuals through which a disease
spreads, are formed and destroyed according to a set of
previously defined rules. The number of edges attached to
a node is called the node degree and probability distribu-
tion of these degrees over the whole network is called
degree distribution. When implemented as agent-based
simulations, network models can include any level of
detail about the individuals and their relationships in the
network. However, researchers often work with mathe-
matical approximations of the contact networks to sim-
plify analysis.

Percolation theory [29,30] and pair approximations
[26,31,32] are among many such methods developed in
recent years to make predictions of the spread of disease
in heterogeneous populations. Results from the previous
studies suggest that the spread of an infection can depend
significantly on the network structure [29,30,33-36].
Using a number of different techniques such as contact
tracking [37], surveys [38], census [30,39,40] and others
[36], researchers have been trying to build realistic contact
networks. Random networks with regular, Poisson, expo-
nential and scale-free degree distributions have mainly
been used in the individual-based models [33,41].
Through use of detailed stochastic network models we
have not only been able to understand the relationship
between network structure and spread of sexually-trans-
mitted infections [27,28,42], but also how to contain pos-
sible bioterrorist attacks [43].
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Similarly, it has been found that there are also significant
differences in predictions of spatially-structured popula-
tions and spatially-unstructured populations [35,44,45].
In spatially-structured populations, the development of
coexistence, diversity and altruism is easier [31,46], epi-
demics have more realistic time series and critical commu-
nity sizes [32] and evolutionary velocities are slower [47],
as compared to spatially-unstructured populations.
Researchers have also found that cooperative behavior in
classical games such as the Prisoner's Dilemma persists
longer in spatially-structured populations [48].

Incorporating human behavior into mathematical models
of disease spread is critical for making quantitative predic-
tions about infection dynamics and developing appropri-
ate policies for cases where individual behavior influences
disease incidence. At the same time, social contact struc-
ture greatly influences infection dynamics and more accu-
rately describes certain diseases. However, most previous
models of infectious disease transmission that incorpo-
rate human behavior rely upon homogeneous mixing
assumptions to a greater or lesser extent, while most spa-
tial or network infectious disease transmission models
treat human behavior as fixed.

Earlier research by the authors demonstrated qualitative
changes in behavior-infection dynamics once social con-
tact structure is introduced: self-interested behavior can
quickly stop outbreaks in discrete, contact-structured pop-
ulations through voluntary ring vaccination (targeted
immunization of primary and secondary contacts) con-
trary to the predictions of the contact-unstructured popu-
lations where self-interested behavior leads to a "tragedy
of the commons" [49]. It also illustrated the importance
of discrete effects in spatially localized population by
showing that events at small, individual scales can have
significant implications for population-level outcomes
such as final size and number vaccinated. However this
model made simplifying assumptions regarding disease
natural history, pre-existing immunity, and human
behaviour. Our objective in the present paper is to see
how relaxing some of these assumptions will affect dis-
ease dynamics in a population on a contact-structured
network, where individuals choose whether or not to vac-
cinate against a vaccine-preventable disease by weighing
infection risks versus vaccine risks. We also seek to catalog
the possible outcomes of behavior-infection dynamics for
vaccine-preventable infections on random, static net-
works. Because these types of models are at an early stage
of development, we analyze a simple theoretical model
here, in order to identify fundamental types of dynamics
that can occur, rather than developing a realistic, highly
detailed model.

Methods
Network Formation
We consider a social network model, where the node
degree is described by a Poisson distribution [50] with
mean ν. In the simulation the network is first formed by a
Poisson process: individuals acquire new neighbors with
a constant probability per time step, and each neighbor
connection has a constant probability per time step of
being broken. This process is continued until the desired
value of ν has been reached. The node degree distribution
depends on the relative magnitude of ϕ and φ, the rate at
which an individual forms a new neighbor and the rate at
which an individual breaks up a neighbor relation, respec-
tively. It can be shown that the average node degree in this
process is 2ϕ/φ. The spread of disease is then studied
through the resulting (now static) social network (with no
demographic processes). Demographic processes are not
included because the model represents a single epidemic
moving through a small population on a timescale of
months.

A number I0 of individuals out of a population with size
N composed of susceptible individuals are selected at ran-
dom and inoculated with the disease. There is a probabil-
ity β per day at which an infectious node will transmit the
disease to a neighboring susceptible node. Therefore, if a
susceptible node has ninf infectious neighbors on a given
day, the total probability λ that the node becomes
infected on that day is

The simulation time-step is one day, and each node's sta-
tus is updated at the end of each day. This equation can be
computed from basic probability theory.

Decision Process
On any given day, a susceptible individual can choose
either to vaccinate, or not to vaccinate (leaving open the
possibility of vaccinating in future). If the payoff to vacci-
nate (PV) on a given day for a given individual is larger
that the payoff not to vaccinate (PN), the individual will
choose to vaccinate. Otherwise the individual will not
vaccinate. Individuals weigh the benefits of vaccinating
now (protection against the disease now, but with small
vaccine risks and some probability the vaccine will not
work) against the benefits of not vaccinating now (avoid-
ing the risk of vaccinations and possibly avoiding infec-
tion as well, with the option to vaccinate in future if
necessary, versus becoming infected at some point in
future).

We assume that individuals become infectious when dis-
ease symptoms appear. We assume that individuals base
vaccination decisions upon the presence of symptoms in

l b= − −1 1( )ninf (1)
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a neighbor. This assumption is modeled according to the
hypothesis that the attitudes are formed and modified as
individuals acquire information about a process. When
there is a lack of explicit communication, the only way of
acquiring this information is through examination of
individuals' neighbors [51]. Hence the perceived probabil-
ity λperc per day of being infected today, if an individual
has ninf infected neighbors is given by

where βperc is the perceived probability per day that the
individual is infected by a single given infectious neigh-
bor. In the following two subsections, we describe a Basic
Model and an Extended Model with other assumptions
about decision making.

Basic Model
Vaccination and Natural History of Infection
We assume that the duration of latent period for an
infected individual is drawn from a Gamma distribution
with mean of 1/σ days and variance of Vσ days2. The latent
period is followed by an infectious period for a duration
of time drawn from a Gamma distribution with mean of
1/γ and a variance of Vγ days2. If exposed to a disease, the
individual either dies with probability dinf due to fatal dis-
ease complications, or recovers gaining lifelong immunity
with probability 1-dinf (we do not consider non-fatal out-
comes such as long-term health conditions in this case). If
an individual chooses to vaccinate, s/he will either vacci-
nate successfully with probability  gaining lifelong immu-

nity, or vaccinate unsuccessfully with probability 1- and
remain susceptible to the disease. For a vaccinated indi-
vidual, there is also dvac probability of death due to vac-
cine. In general, individuals have magnified perceptions
of vaccine risks [52], so we assume a relatively high base-
line perceived probability of death due to vaccine, dvac =
10-3. Baseline parameter values appear in Table 1.

The Payoff Functions
The payoff functions are expressed in terms of the number
of life years L that the individual can expect to accrue as a
result of their strategy choice. For an illustrative descrip-
tion of the decision process and different payoffs in the
Basic Infection-Decision Model see Figure 1. Let us first
consider the payoff PN for not vaccinating today. If the
individual does not vaccinate, s/he is either infected today
with perceived probability of infection λperc or not with
probability 1-λperc. If the individual is infected today, s/he
either dies due to fatal disease complications with proba-
bility dinf accruing no additional life-years, or recovers
from the disease gaining lifelong immunity with proba-
bility 1-dinf and accruing L additional life years. Therefore,
the payoff if the non-vaccinating individual is infected is
(1 - dinf)L. Whereas if the non-vaccinating individual
escapes infection today, then s/he receives a payoff of α,
representing the individual's expected remaining life years
under continued susceptibility (since s/he is not vacci-
nated nor infected today). Hence, the total payoff PN to an
individual who does not vaccinate today is

l bperc perc
ninf= − −1 1( ) . (2)

P d LN perc perc inf= − + −( ) [( ) ]1 1l a l (3)

Table 1: Baseline parameter values for SEIR-type infection. 

Parameter Meaning Value Reference

N Population size 5000 assumption
I0 Initial number of individuals inoculated with smallpox 10 assumption
ν Mean node degree 10 assumption, Ref. [64]
τ Scaling constant for probability of infection from neighbours' neighbours 0.2 assumption
β Probability of node-to-node transmission 0.02 day-1 Ref. [43]

βperc Perceived probability of node-to-node transmission 0.02 day-1 Ref. [43]
1/σ Mean duration of latent period 12 days Ref. [65]
Vσ Variance of latent period 4 days2 Ref. [65]
1/γ Mean duration of infectious period 19 days Ref. [65]
Vγ Variance of infectious period

(original model)
4 days2 Ref. [65]

Vι Variance of infectious period
(extended model)

4 days2 Ref. [65]

Vκ Variance of vaccine latent period 4 days2 Ref. [65]
dinf Probability of death due to infection 0.3 Ref. [66]
dvac Probability of death due to vaccine-related complications 0.001 assumption, Ref. [52]

Vaccine efficacy 0.95 Ref. [43]
α Payoff for individuals with continued susceptibility 40 life-years Ref. [67]
L Payoff for individuals with lifelong immunity 40 life-years Ref. [67]

Parameter values selected are similar to those used in Ref. [49], and are intended to represent smallpox-type infections with high case fatality rates 
where transmission is dominated by close contact transmission to social contacts (e.g. household transmission, nosocomial transmission). Ref. [49] 
investigates the impact of variations in the node degree ν.
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The parameter α is determined by the likelihood of being
infected or of being compelled to vaccinate later on dur-
ing the current epidemic outbreak in the population, and
the likelihood that these result in death. Rather than
expressing α in terms of weighted average of all future
possibilities (which are numerous), we treat it as a con-
stant parameter and select values which shed light on our
research question. We expect α <L, since a person with
immunity can expect to outlive a person without immu-
nity, on average.

If we look at time horizons that are longer than the current
epidemic, other factors may influence our assumptions
about α. Namely, if vaccine-derived immunity wanes and
the population is facing another outbreak in 20 years,
then vaccination today may appear less beneficial, even if
α <L still holds. In spite of that, these distant future events

would be heavily discounted [53], hence we limit our
time horizon just to the current outbreak. Although we
expect α <L, it is not clear how much smaller it should be,
therefore we will assume α = L (Ref. [49] explores the case
α <L). We note that the baseline value of L does not
change the model dynamics qualitatively or quantita-
tively, since α scales with L (subject to above assumptions
about future outbreaks).

We next consider the payoff PV to vaccinate today. If the
individual chooses to vaccinate, s/he will either vaccinate
successfully with probability  since the vaccine was effica-
cious, or unsuccessfully with probability 1 -  if the vaccine
was not efficacious. We make an assumption that there is
a very small probability of dying from the vaccine, dvac. If
the vaccine is efficacious but its outcome is death due to
fatal complications from the vaccine then a person does

Individual payoffs in the Basic ModelFigure 1
Individual payoffs in the Basic Model. Ellipses represent transition states while boxes represent formal states. Parameters 
on arrows denote transition probabilities and expressions in boxes denote payoffs for entering that state.
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not accrue any additional life years. On the other hand, if
the vaccine is efficacious and the individual does not suf-
fer any complications, then s/he receives a payoff

Similarly, if the vaccine is not efficacious, then either the
individual dies from fatal vaccine complications with
probability dvac, accruing no additional life years, or the
individual does not die (probability 1-dvac). In the latter
case, the individual is either infected today with probabil-
ity λperc, or the individual escapes the infection today with
probability 1-λperc. If the individual is not infected today,
s/he has escaped both death due to vaccine and infection
and remains susceptible, so her/his payoff is α. On the
other hand, if the individual is infected today, s/he suffers
a probability dinf of dying due to the disease, accruing no
additional life years. If s/he survives the infection (proba-
bility 1-dinf), her/his payoff is L accrued life years, or life-
long immunity. Hence, if the vaccine is not efficacious,
the total payoff is

and from Equations (4) and (5), we have

On any given day, if

then the individual decides to vaccinate. If the individual
does not vaccinate today, they may still vaccinate in future
according to the same decision rules, and with no mem-
ory of their previous decision history. If the individual
vaccinates today, we assume they believe they are now
protected and hence will not seek re-vaccination in future,
which is a reasonable assumption given the high clinical
efficacy of most vaccines when properly administered,

Rationale for further analysis
Here we identify four simplifying assumptions of the
Basic Model [49] that we relax in our current analysis.
First, we look at a range of values for the probability of
death due to infection and vaccination (rather than point
values only) to see how they will influence infection
dynamics.

Second, the previous model assumed no residual immu-
nity to the disease. For relevance to the case where the
population has experienced previous outbreaks it is desir-
able to investigate how and whether infection dynamics

will change when a certain percentage of the population
has residual immunity.

Third, the decision process in the previous model was
binary: if the payoff to vaccinate exceeds the payoff not to
vaccinate for an individual on a given day, s/he will
always vaccinate and vice versa. Here, we assume that
individuals vaccinate phenomenologically only with a
certain probability when PV > PN. This can capture hetero-
geneity due to variation in health status risk perception
etc.

Fourth, we previously assumed that individuals only vac-
cinate once symptoms appear in their neighbours. How-
ever, there may be cases where individuals vaccinate
before the outbreak reaches that point, such as when their
neighbors' neighbors become infected. This may be the
case for infections where individuals can become infec-
tious before exhibiting symptoms, for example. Moreover,
we also assumed previously that the vaccine works imme-
diately upon inoculation, which is a reasonable assump-
tion in the case of smallpox since vaccination can prevent
both disease and viral shedding in individuals who vacci-
nate within three days of becoming infected [54], but may
not be a reasonable assumption for other infections. For
instance, measles, mumps and rubella are diseases that are
spread through close contact and it requires about 2 weeks
for the influenza vaccine to provide protection against
influenza virus infection [55] and about 20 days for devel-
oping MMR immunity [56]. Hence our assumption that
the vaccine works right away is not always realistic. The
effects of pre-emptive vaccination, and especially their
interaction with assumptions about the latent period of
infection and the time required for vaccines to mount an
effective response to infection, could result in nontrivial
dynamics. Therefore, we relaxed the simplifications of the
original model by considering a range of possible disease
latent periods, a range of possible time required for vacci-
nation elicit full protection, and by including the infec-
tion status of neighbours' neighbours in the decision-
making process of individuals.

Based on the preceding, our main research questions are
the following: (i) What happens as perceived disease risk
goes to zero (e.g. for a less dangerous disease like flu or
chicken pox)-will voluntary ring vaccination still be effec-
tive? (ii) How do infection dynamics change when vac-
cine risk perception changes? (iii) How do infection
dynamics change if a certain percentage of the individuals
in the population have residual immunity to the disease?
(iv) How do infection dynamics change if a probabilistic
element is introduced in individual decision making? (v)
How do the disease latent period, delay in time to effec-
tive vaccine-induced immune response, and pre-emptive
vaccination based on infection status of neighbours'

( ) .1 − d Lvac (4)

( )[( ) ( ) )]1 1 1− − + −d d Lvac perc perc infl a l (5)

P d L

d d L
V vac

vac perc perc inf

= − +
− − − + −

e
e l a l

{( ) }

( ){( )[( ) ( ) ]}

1

1 1 1 1

(6)

P PV N> (7)
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neighbours interact to determine infection-behaviour
dynamics?

To answer the first three questions, we carried out further
analyses of the Basic Model. To answer the fourth ques-
tions, we made a simple modification to the Basic Model.
To answer the fifth question, we developed a substantially
revised Extended Model as described in the following sub-
sections.

Extended Behaviour-Infection Model
Natural History of Infection
As before, the duration of the latent period for an infected
individual is drawn from a Gamma distribution with
mean of 1/ι and variance Vι days2 and the duration of the
latent period for a vaccinated individual (i.e., the duration
of time before the vaccination is able to provide a protec-

tive response) is drawn from a Gamma distribution with
mean of 1/κ and variance Vκ days2.

The Payoff Functions
Here we modify the previous payoff functions so that
individuals take into account the number of infectious
neighbors' neighbors when deciding whether to vaccinate.
For an illustrative description of the decision process and
different payoffs in the Extended Model see Figure 2. Let
us first consider the payoff PN for not vaccinating today. As
before, if the individual does not vaccinate, s/he is either
infected today with perceived probability of infection λperc
or not with probability 1-λperc. If the individual is infected
today, s/he either dies due to fatal disease complications
with probability dinf accruing no additional life years, or
recovers from the disease gaining lifelong immunity with
probability 1-dinf and accruing L additional life years.

Individual Payoffs in the Extended ModelFigure 2
Individual Payoffs in the Extended Model. Ellipses represent transition states while boxes represent formal states. Param-
eters on arrows denote transition probabilities and expressions in boxes denote payoffs for entering that state.
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On the other hand, if the individual is not infected today
by her/his immediate neighbors, then s/he is either
infected in the near future by her/his infectious neighbors'
neighbors or not. If the individual is infected by her/his
infectious neighbors' neighbors, s/he either dies due to
fatal disease complications with probability dinf accruing
no additional life years, or recovers from the disease gain-
ing lifelong immunity with probability 1-dinf and accruing
L additional life years. If the non-vaccinating individual is
not infected by her/his infectious neighbors' neighbors, s/
he receives a payoff of α (same value and the meaning as
in our original model).

We assume that the perceived probability ϑperc per day of
being infected by infectious neighbors' neighbors is given
by

where minf represents the number of infectious neighbors'
neighbors of an individual and τ is a scaling constant that
controls how quickly individuals get infected by their
infectious neighbors' neighbors-the individuals with
more infectious neighbors' neighbors have a higher prob-
ability of getting infected than the individuals with less
infectious neighbors' neighbors. (We note that this equa-
tion makes the simplifying assumption that individuals
have information on which of their neighbours' neigh-
bours are infected, but not which of their neighbours'
neighbours have been vaccinated, and this could poten-
tially influence decision-making.) Hence, the total payoff
PN to an individual who does not vaccinate today is

We next compute the payoff PV to vaccinate today. If the
individual chooses to vaccinate, s/he will either vaccinate
successfully with probability  since the vaccine was effica-
cious, or unsuccessfully with probability 1  if the vaccine
was not efficacious. We make an assumption that there is
a very small probability of dying from the vaccine, dvac. If
the vaccine is efficacious but its outcome is death due to
fatal complications from the vaccine then a person does
not accrue any additional life years. On the other hand, if
the vaccine is efficacious and the individual does not suf-
fer any complications, then s/he receives a payoff

Similarly, if the vaccine is not efficacious, then either the
individual dies from fatal vaccine complications with
probability dvac, accruing no additional life years, or the
individual does not die (probability 1-dvac). In the latter

case, the individual is either infected today with probabil-
ity λperc, or the individual escapes the infection today with
probability 1-λperc.

If the individual is not infected today by her/his immedi-
ate neighbors, then s/he is either infected in the near
future by her/his infectious neighbors' neighbors or not. If
the individual is infected by her/his infectious neighbors'
neighbors, s/he either dies due to fatal disease complica-
tions with probability dinf accruing no additional life
years, or recovers from the disease gaining lifelong immu-
nity with probability 1-dinf and accruing L additional life
years. If the non-vaccinating individual is not infected by
her/his infectious neighbors' neighbors, s/he has escaped
both death due to the vaccine and infection and remains
susceptible, so s/hereceives a payoff of α.

On the other hand, if the individual is infected today, s/he
suffers a probability dinf of dying due to the disease, accru-
ing no additional life years. If s/he survives the infection
(probability 1-dinf), her/his payoff is L accrued life years,
or lifelong immunity. Hence, if the vaccine is not effica-
cious, the total payoff is

and from equations (10) and (11), we have

And again, on any given day, if

then the individual decides to vaccinate. Otherwise they
may still vaccinate in future according to the same deci-
sion rules, and with no memory of their previous decision
history.

Results and Discussion
Basic Model
Disease and Vaccine Risk
When varying the probability of death due to disease dinf,
and the probability of death due to vaccine dvac, three
types of dynamics are observed (Figure 3a,b). First, for dinf
≥ 0.06 and dvac ≤ 0.005, a negligible final size of the epi-
demic and a very small number vaccinated occurs. In this
case, all individuals with at least one infectious neighbor
vaccinate immediately, preventing disease transmission.
Secondary and tertiary transmissions are limited and rare
and occur only because of vaccine failures in some indi-

J t k
iperc infexp m= − − +
+

1
1 1
1 1

{ (
/
/

)} (8)

P d L d LN perc perc perc inf perc inf= − − + − + −( )[( ) ( ) ] [( ) ]1 1 1 1l J a J l

(9)

( )1 − d Lvac (10)

( ){( )[( ) ( ) ] (1 1 1 1 1− − − + − + −d d L dvac perc perc perc inf perc infl J a J l )) )}L

(11)

P d L d

d
V vac vac perc

perc perc

= − + − − −

− + −

e e l

J a J

( ) ( )( ){( )

[( ) (

1 1 1 1

1 1 iinf perc infL d L) ] ( ) )}+ −l 1

(12)

P PV N>
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viduals. Therefore, the epidemic is successfully controlled
through voluntary ring vaccination.

Second, when dinf ≤ 0.005 or dvac ≥ 0.06 (or when r ≤ 0.2
[see Additional File 1]) individuals stop vaccinating,
resulting in large final size since there are no control meas-
ures to prevent the infection from spreading. A third out-
come between those thresholds, when 0.005 <dinf < 0.06
and 0.005 <dvac < 0.06, is a large number vaccinated and a
large final size since individuals with more infectious
neighbors perceive disease more risky than the vaccine
and will normally vaccinate, while individuals with less
infectious neighbors perceive vaccine more risky than the
disease and do not always vaccinate, allowing the disease
to percolate through the population.

In Figure 3b, it is clear that there are parameter regimes
where dvac ≈ 0.03 is much lower than dinf = 0.3, but none-

theless individuals are predicted not to vaccinate and
infection is predicted to spread throughout the network.
This appears counterintuitive, however, it stems from the
fact that the payoff not to vaccinate is a function of both
the probability of death and the probability of being
infected. At the parameter values of Table 1, the per-day
probability of transmission from a susceptible to an
infected person is 0.02, which is relatively low. By com-
parison, choosing to vaccinate today means the individu-
als takes an instantaneous risk. Therefore, even if dvac is
less than dinf, individuals may choose not to vaccinate,
preferring to take their chance that their social contacts
will soon recover and hence no longer post an infection
risk to them. A simple calculation based on these simula-
tion results [see Additional File 1] shows that in order for
an outbreak to be prevented, under our baseline parame-
ter assumptions (Table 1), the following condition needs
to be satisfied:

Results from the Basic ModelFigure 3
Results from the Basic Model. Dependence of final epidemic size and final number vaccinated on: probability of death due 
to disease dinf when dvac = 0.001 (a), probability of death due to vaccine dvac when dinf = 0.03 (b), percentage of population with 
previous immunity (c), and probability to vaccinate ρ (d) in the Basic Model. Error bars represent two standard deviations 
from the mean across 20 simulations per data point. Note that dinf = 0.3 (Table 1) lies to the right of the range illustrated in Fig-
ure 1a; we did not plot the results for dinf > 0.07 because they are qualitatively unchanged from the case dinf = 0.07.
Page 9 of 15
(page number not for citation purposes)



BMC Infectious Diseases 2009, 9:77 http://www.biomedcentral.com/1471-2334/9/77
or equivalently

where r stands for perceived relative risk (r = dvac/dinf). It is
possible to arrive at a similar conclusion by analyzing the
equation:

which was derived in Ref. [49] from equations (3) and
(6), and represents a condition under which an individual
will vaccinate if s/he has at least one infectious neighbor
in the Basic Model. Under our baseline parameters (Table
1), it can easily be shown that the equation (15) holds
true whenever

which is consistent with Equation (14). Hence, individu-
als need to perceive the vaccine to be approximately 50
times safer than the disease before they will chose to vac-
cinate.

Pre-existing Immunity
Here we study the case where a certain proportion of the
population has immunity from previous outbreaks. We
assume that individuals are not aware of their pre-existing
immunity and will follow the same decision process as
before. However, if exposed to the disease, the individuals
with pre-existing immunity will not get infected and
hence will not transmit the disease. We note that in pop-
ulations where pre-existing immunity from previous out-
breaks is based on previous exposure to natural infection
only (and not vaccination), individuals with pre-existing
immunity are more likely to be aware of this fact due to
the highly characteristic symptoms of smallpox infection;
therefore this assumption may not be valid for those pop-
ulations without previous access to vaccine. However, in
cases where ring vaccination was widely applied in previ-
ous outbreaks in the population, individuals may not
know their immune status due to the possibility of wan-
ing vaccine-derived immunity and hence may conserva-
tively assume they no longer have immunity.

We observe that the final size and number vaccinated are
not strongly dependent on percentage of the population
with pre-existing immunity (Figure 3c). This is exactly
what we expected to see: individuals vaccinate as soon as
they find out that they have an infectious neighbor, pre-

venting the transmission of the infection, regardless of
whether they have previous immunity or not. However,
we see slightly more secondary transmission when the
percent immune is low.

The current social contact network is not age structured,
even though social contacts tend to be age structured.
Therefore there was no mechanism in our model to have
individuals with residual immunity preferentially make
contact with other individuals that have residual immu-
nity, but age structuring of the population might well
cause such a preference. Hence, the lack of dependence of
final size and number vaccinated on percentage of the
population with pre-existing immunity may, in part,
result from their being well mixed in the population.

Probabilistic Decision Process
To study the effect of probabilistic decision-making on
disease dynamics we varied the probability (ρ) with which
an individual vaccinates when PV > PN. In this case the
decision to vaccinate or not is slightly different than in the
original model and is based upon the following: if

then the individual does not vaccinate today (but may still
vaccinate in the future), but if

then the individual vaccinates with a certain probability ρ.
For this scenario, we again observe three possible types of
dynamics. When varying ρ, we observe that the final size
increases dramatically as ρ falls below 0.2 (Figure 3d). The
number vaccinated is highest for 0.05 ≤ ρ ≤ 0.2. For ρ <
0.05, the number vaccinated is small since ρ is small and
therefore very few individuals with infectious neighbors
are allowed to vaccinate and as a result, the infection eas-
ily spreads to over 90% of the population. For ρ > 0.2 the
number vaccinated as well as the final size are low because
the outbreak is quickly contained through voluntary ring
vaccination.

Even though our network model is not dynamic, these
results are qualitatively comparable to the results of a lat-
tice gas cellular automaton model of Ref. [57] which
shows that the severity of an epidemic also increases as the
proportion of vaccinated neighbors of an infectious indi-
vidual decreases. In conclusion, as long as a certain pro-
portion of the population acts rationally and vaccinates in
the presence of infectious neighbors on any given day, the
outbreak will be effectively controlled through voluntary
ring vaccination. This proportion could be as low as 5% (ρ
= 0.05), at our baseline parameter values!

d dinf vac≥ 60 (13)

r ≤ 1 60/ (14)

b
e eperc

dvac
dinf dvac

>
+ −[ ( ) ]

.
1

(15)

r ≤ 1 52/ . (16)

P PV N≤

P PV N>
Page 10 of 15
(page number not for citation purposes)



BMC Infectious Diseases 2009, 9:77 http://www.biomedcentral.com/1471-2334/9/77
Extended Model
Table 2 defines parameter values used in the Extended
Model. Tables 3 and 4 contain the results from the
Extended Model, where we consider the final size of the
epidemic and final number vaccinated as a function of the
duration of the disease latent period (1/ι) and the dura-
tion of the vaccine latent period (1/κ). We observe 2
regions with relatively low numbers of vaccinated and
infectious individuals: (i) when 1/κ ≤ 15 days and (ii) a
band slightly off the main diagonal when 1/ι is marginally
less than 1/κ. Otherwise, we observe large final size and
number vaccinated.

First of all we consider the region where 1/κ ≤ 15 days. We
see small final size and small number vaccinated when 1/
κ ≤ 10 days since knowing that it takes some time for the
vaccine to work, individuals vaccinate right away if they
have infectious neighbor(s) hence the epidemic is rela-
tively quickly contained through voluntary ring vaccina-
tion. For 10 days < 1/κ < 15 days, it takes longer for the
vaccine to work therefore even if the individuals with
infectious neighbor(s)/neighbors' neighbor(s) vaccinate
right away, they may not be able to prevent the infection.
This results in a significant increase in the number of vac-
cinated individuals and the final size in this region. Simi-
larly as 1/ι approaches 50 days for a given value of 1/κ,
individuals with infectious neighbor(s)/neighbors' neigh-
bor(s) start waiting more and more before they choose to
vaccinate, overestimating how much time they and in
those cases not being able to prevent the infection.

Secondly, we consider the area about the main diagonal.
The epidemic is very quickly controlled when the two
latent periods are exactly the same, since individuals with
infectious neighbor(s), or infectious neighbors' neigh-
bor(s), will vaccinate right away, understanding that it
takes the same amount of time for the vaccine to work as
it takes for them to become infected. Hence we see small
final size and small number vaccinated on the main diag-
onal. Above it, we see a wide band of slightly higher val-

ues. In this case 1/κ > 1/ι and being aware that it takes
longer for the vaccine to work than to get infected from
his/her immediate neighbor, individuals vaccinate as
soon as their neighbors' neighbor becomes infectious and
therefore the epidemic is effectively controlled. On the
other hand, below the main diagonal where 1/κ < 1/ι, we
see a narrow band of significantly higher values than on
the main diagonal. In this case some individuals overesti-
mate how much time they have to vaccinate and are not
able to prevent infection, which results in a large final size
and number vaccinated.

Above and below the band of relatively low values around
the main diagonal, we see very large final size and number
vaccinated. Below the band where 1/κ << 1/ι, this is the
case since the individuals with infectious neighbor(s)/
infectious neighbors' neighbor(s) do not think to vacci-
nate right away since 1/ι is now large. Once they do vacci-
nate, it takes 15–45 days for the vaccine to work so most
of the vaccinated individuals end up becoming infected.
Alternatively, above the band where 1/κ Ŭ 1/ι, we see high
numbers of vaccinated and infectious individuals since
the vaccine does not work fast enough even if the individ-
uals vaccinate as soon as they have infectious neighbor(s)/
infectious neighbors' neighbor and most of the popula-
tion ends up becoming infected.

Although the results may differ for other assumptions and
parameter values relating to the decision-making process,
these results show how disease latent period, vaccine
latent period and decision-making can interact to produce
a wide range of results at the population level.

It can be argued that the network we analyze is technically
not a static network, because dead individuals would nor-
mally be removed from a social contact network and
hence the network links change through the course of the
outbreak. However, the network is static in the important
sense that no links through which transmission of disease
is possible are formed or broken up during the simula-

Table 2: Parameter definitions for the Extended Model.

Parameter Meaning

α Payoff to a person who remains susceptible today
L Payoff to a person who has acquired immunity, either through vaccine or through infection and who did not experience long-term 

complications from vaccine or infection
ninf Number of infectious neighbors for an individual on a given day
minf Number of infectious neighbors' neighbors for an individual on a given day
λ Probability per day of an individual becoming infected by infectious neighbors
λperc Perceived probability per day of an individual becoming infected by infectious neighbors
ϑperc Perceived probability per day of an individual becoming infected by infectious neighbors' neighbors
ρ Probability with which an individual will vaccinate today if her/his PV > PN today
1/ι Duration of the latent period for an infectious individual in the extended model
1/κ Duration of the latent period for a vaccinated individual in the extended model
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tion: individuals who leave the infectious compartment
are either recovered and immune for life, or dead, but in
either case they will not transmit any more infection dur-
ing the current outbreak. Therefore the dynamics will be
the same regardless of whether dead individuals are
removed from the network in the course of the simulation
(and assuming that dead individuals are not replaced with
susceptible individuals, which is a valid assumption for
the course of a single outbreak). We note that the case
fatality rate is still relevant to the dynamics through the

behaviour function, however, since a more dangerous dis-
ease will change the individual willingness to vaccinate.

Here we make the idealized assumption that individuals
will vaccinate on any given day if PV > PN and, should they
choose not to vaccinate, will not have a memory of that
decision in the future. We emphasize that this is a highly
simplified description of individual decision-making that
may not hold in real populations. For instance, the role of
omission bias in pertussis vaccination has been previously

Table 3: The Extended Model results. 

Number of Days 0 10 20 30 40 50

0 12.1
1226.56

75.55
3774.8

594.25
4924

1782
4955.55

3254.6
4959

4118.9
4957.9

10 11.85
116.9

36.05
2766.3

100.30
4039.55

405.8
4890

1000.5
4948.5

1633.3
4954.8

20 12.9
132.15

796.45
3896.75

46.8
3166.8

94.95
3946.9

344.8
4864.4

725.95
4939

30 11.75
120.6

745.1
3685.1

1674.8
4683.35

49.95
3231.2

105.9
4202.05

343.45
4870.9

40 12.5
124.45

803.25
3918.5

1645.55
4666.7

1891.55
4754.8

44.15
2952.6

105.15
4250.85

50 12
120.1

780.3
3870.35

1560.45
4439.1

1825.4
4735.25

1930.7
4762.65

47.35
3132.9

Rows represent the duration of the disease latent period 1/ι, while columns represent the duration of the vaccine latent period 1/κ. Final epidemic 
size is shown using bold numbers and final number vaccinated is italicized. See Table 4 for the corresponding standard deviation values.

Table 4: Standard deviation values corresponding to the results in Table 3. 

Number of Days 0 10 20 30 40 50

0 ± 1.37
± 219.21

± 21.29
± 384.38

± 111.24
± 17.67

± 218.91
± 5.69

± 203.81
± 2.65

± 72.88
± 4.07

10 ± 1.39
± 18.75

± 4.14
± 234.98

± 27.99
± 942.46

± 67.78
± 24.52

± 106.24
± 4.67

± 121.63
± 4.62

20 ± 1.73
± 28.30

± 43.25
± 80.46

± 9.18
± 302.86

± 31.94
± 948.69

± 55.93
± 29.19

± 66.73
± 5.96

30 ± 1.64
± 24.81

± 180.08
± 854.25

± 59.46
± 34.15

± 9.12
± 331.18

± 24.78
± 286.69

± 49.57
± 28.25

40 ± 1.80
± 26.15

± 47.22
± 90.17

± 43.12
± 21.34

± 37.54
± 19.57

± 12.43
± 732.02

± 20.16
± 214.17

50 ± 1.67
± 24.34

± 43.25
± 80.63

± 359.64
± 1018.59

± 68.03
± 28.17

± 47.97
± 18.96

± 9.51
± 390.62

Rows represent the duration of the disease latent period 1/ι, while columns represent the duration of the vaccine latent period 1/κ. Standard 
deviation values for the final epidemic size (bold numbers) and for the final number vaccinated (italicized numbers) are calculated based on the 
results from 20 simulations per data point.
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explored [58], prospect theory may have some validity in
individual vaccine decision-making processes [59], and
bounded rationality may be important in developing
assumptions about individual decision-making as well
[17]. Finally, we also emphasize our assumption that indi-
viduals are not influenced by-and do not have informa-
tion regarding-the global status of the epidemic, such as
the presence of infection in other parts of the network.
However, in reality, some individuals may choose to pre-
emptively vaccinate despite not having any infected social
contacts. This factor and similar factors such as the effects
of media coverage could be included in future models.

Conclusion
Numerous studies have shown that human behavior has
a notable effect on infection dynamics and that its incor-
poration into epidemic models is essential for making
more accurate predictions about disease spread, evaluat-
ing different control measures and developing appropri-
ate policies. The previous literature on behavior-infection
models of disease transmission has usually focused on
homogeneously mixing populations without any geo-
graphical or social contact structure [5], even though het-
erogeneity in network structure significantly affects
transmission dynamics [26,29,30,33-35]. Few models
have used network or individual-based approaches. Our
earlier work [49] revealed important differences in behav-
ior-infection dynamics between contact-structured and
contact-unstructured populations, for instance the incen-
tive for an individual to vaccinate under a voluntary vac-
cination policy. It also demonstrated that spatial
localization of transmission can enable eradication of a
disease under a voluntary vaccination policy, which con-
tradicts the conclusions of homogeneously mixing mod-
els which normally predict that eradication is impossible
under such a policy. This result confirms previous find-
ings about the importance of population structure and the
strong effect it has on the disease transmission
[29,30,34,35,60]. It also suggests that incorporating all
scales, from individuals and smaller communities to large
cities with distinct structures and transmission probabili-
ties, into the model may be important [45]. Even though
this represents a considerable challenge for the research-
ers, since it requires knowledge about how transmission
varies with social or geographical space, it should be
explored in greater depth.

However, Ref. [49] made simplifying assumptions con-
cerning disease natural history, pre-exisitng immunity
and human behavior. Here, we relaxed those assumptions
and showed that the qualitative outcome of rational, self-
interested behaviour under a voluntary vaccination policy
can vary significantly depending on interactions between
contact structure, perceived vaccine and disease risks, and

the way that individual vaccination decision-making is
modeled and that disease transmission dynamics is not
strongly dependent on percentage of population with pre-
existing immunity. In general, based on our results we dis-
tinguish three qualitatively different cases regarding the
possible outcomes of the epidemic in terms of the final
size and total number vaccinated depending on risk and
behavior variables: (1) small total number vaccinated and
final epidemic size, due to rapid control through volun-
tary ring vaccination, (2) large total number vaccinated
and significant final epidemic size, due to imperfect vol-
untary ring vaccination, and (3) little or no vaccination
and large final epidemic size, corresponding to little or no
voluntary ring vaccination. These simulations indicated
that alignment of socially and individually optimal results
(outcome (1) above), which generally does not occur in
homogeneous mixing models, occurs for a fairly broad
range of parameter values investigated here. Finally, our
model illustrates the sensitivity of epidemiological sys-
tems by showing that slight changes in values of the
parameters such as perceived disease or vaccine related
risk or vaccination behaviour-related parameters, can lead
to a significant change in population-level outcomes such
as final size and total number vaccinated.

Ref. [14] showed that the expected vaccine uptake is less
than the eradication threshold for any perceived relative
risk r > 0, formalizing the argument that it is impossible
to stop an outbreak through voluntary vaccination when
individuals act according to their own interest [8-13,15-
18,61]. Our results indicate that it is possible to eradicate
a disease through voluntary vaccination when individuals
act according to their own interest even when r > 0, con-
firming the result from our earlier work [49]. More specif-
ically, we showed that the outbreak is controlled when
0.02 <r < 0.2 and completely prevented when r ≤ 0.02 on
average.

Although we have relaxed many of the simplifying
assumptions made in the previous paper [49], some still
remain. For instance, we assumed that α = L. For the case
α <L, we would expect to see higher total number vacci-
nated and as a result, lower final epidemic size, on aver-
age. In addition, we used a static, random network to
investigate the issues in the current study. Considering the
findings from earlier analysis that show that the spread of
disease depends on the network structure
[29,30,34,35,60], the predictions may be very different for
other network types. Therefore, the need for incorporating
other types of network structures, including those that
accurately represent real networks in explicit geographical
regions [39,40] as well as adaptive networks [62], into epi-
demic models is obvious and is something that should be
further investigated.
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In order to refine their understanding of epidemiology of
infectious diseases, researchers have been introducing
greater biological realism into models [5,7,63-67]. Here,
by relaxing the simplifying assumptions made in the pre-
vious model by the authors [49], we have been able to bet-
ter understand what changes and what stays the same
under alternative assumptions about individual decision-
making and infectious disease epidemiology.

Contact network models mathematically formalize con-
tact patterns between the individuals that govern disease
transmission and hence produce more accurate results for
predicting disease spread through heterogeneous host
populations than the models with unstructured popula-
tions, especially for disease that are spread through close
contact such as sexually transmitted infections [36]. Also,
incorporating human behavior into epidemic models has
been proved to be essential, since it determines infection
dynamics [5]. Our results show that interactions between
human behavior and the role of close contacts in disease
transmission may be an important factor for determining
the feasibility of outbreak control under voluntary vacci-
nation policies. Hence, using network-based behavior
prevalence models is crucial for obtaining more accurate
predictions about disease spread, evaluating different con-
trol measures and developing appropriate vaccination
policies.
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