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Abstract
Background: Nitric oxide (NO•) plays a pivotal role as a leishmanicidal agent in mouse
macrophages. NO• resistant Escherichia coli and Mycobacterium tuberculosis have been associated
with a severe outcome of these diseases.

Methods: In this study we evaluated the in vitro toxicity of nitric oxide for the promastigote stages
of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis parasites, and the
infectivity of the amastigote stage for human macrophages. Parasites were isolated from patients
with cutaneous, mucosal or disseminated leishmaniasis, and NO• resistance was correlated with
clinical presentation.

Results: Seventeen isolates of L. (L.) amazonensis or L. (V.) braziliensis promastigotes were killed by
up to 8 mM of more of NaNO2 (pH 5.0) and therefore were defined as nitric oxide-susceptible. In
contrast, eleven isolates that survived exposure to 16 mM NaNO2 were defined as nitric oxide-
resistant. Patients infected with nitric oxide-resistant Leishmania had significantly larger lesions than
patients infected with nitric oxide-susceptible isolates. Furthermore, nitric oxide-resistant L. (L.)
amazonensis and L. (V.) braziliensis multiplied significantly better in human macrophages than nitric
oxide-susceptible isolates.

Conclusion: These data suggest that nitric oxide-resistance of Leishmania isolates confers a
survival benefit for the parasites inside the macrophage, and possibly exacerbates the clinical course
of human leishmaniasis.
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Background
Leishmaniasis is a parasitic disease caused by the Leishma-
nia spp. protozoa, transmitted to the skin of a mammalian
host during the bite of an infected female sand fly vector.
Infections range in severity from asymptomatic to disfig-
uring forms of tegumentary and potentially fatal visceral
leishmaniasis [1,2]. American tegumentary leishmaniasis
(ATL) presents a spectrum of clinical manifestations char-
acterized by cutaneous (CL), mucosal (ML), disseminated
(DL) and diffuse cutaneous leishmaniasis (DCL). The
major Leishmania species that cause ATL in the New World
are L. (V.) braziliensis, L. (V.) guyanensis, L. (L.) amazonensis
and L. (L.)mexicana. The typical clinical manifestation of
American CL is a single ulcerated lesion with elevated bor-
ders, frequently located on the inferior limbs [3]. Mucosal
leishmaniasis (ML) is a destructive disease that predomi-
nantly affects the nasopharyngeal mucosa. The disease is
most common in areas of L. (V.) braziliensis transmission
and usually occurs months or years after cutaneous leish-
maniasis [4]. Disseminated leishmaniasis (DL) has been
reported almost exclusively in northern and northeastern
Brazil. DL is characterized by the appearance of multiple
pleomorphic lesions in two or more noncontiguous areas
of the body [5].

Leishmania is a digenetic protozoan with an extracellular
flagellated promastigotes form which replicates and
matures to the infectious metacyclic form in the gut of the
sand fly vector. The promastigotes is transmitted to a
mammalian host during the bite of an infected sand fly.
Promastigotes undergo facilitated phagocytosis by a mac-
rophage and convert to the obligate intracellular amastig-
ote life stage [6,7]. Amastigotes survive in macrophage
phagolysosomes, a hostile environment for many
microbes. Leishmania spp. must undergo profound bio-
chemical and morphological adaptations to survive suc-
cessfully and multiply within macrophages [7]. The
mechanisms through which the parasite resists killing
within the toxic environment of the phagolysosome
remain incompletely defined.

Leishmaniasis is controlled through cell-mediated
immune defenses [8]. Murine models have illustrated that
macrophages produce IL-12, which induces CD4+ T cells
and NK cells to release interferon gamma (IFN-γ), polariz-
ing the immune response toward a type 1 (Th1 type) phe-
notype [9,10]. In murine systems, IFN-γ has been shown
to synergize with another macrophage derived cytokine,
tumor necrosis factor alpha (TNF-α), activating nitric
oxide synthase (iNOS or NOS2) to produce nitric oxide
(NO•) with resultant in killing of intracellular parasites
[11-13]. NO• is generated from the oxidation of the termi-
nal guanidine nitrogen atoms of the L-arginine by
NADPH dependent enzyme nitric oxide synthase (NOS)
[14]. In murine models of leishmaniasis, NO•-dependent

mechanisms have been shown to be critical for control of
Leishmania infection[15,16]. The role of NO• in leishm-
anicidal activity of human macrophages, has been
debated [17]. However, recent data suggest that NO• plays
a role in the response of human macrophages to intracel-
lular infections, but the nature of this role is not yet clear
[18,19].

Putative NO•-mediated leishmanicidal actions in eukary-
otic cells include inhibition of mitochondrial respiration,
inactivation of peroxidases, increasing susceptibility to
oxidant damage, inhibition of glycolysis, mutation of
DNA, inhibition of DNA repair and synthesis, S-nitrosyla-
tion, ADP-ribosylation, tyrosine nitration of proteins, dis-
ruption of Fe-S clusters, zinc fingers or heme groups, and
peroxidation of membrane lipids [20,21]. The Leishmania
spp. possesses unique antioxidant mechanisms and
enzymes. Notably, they convert their abundant GSH
stores to trypanothione (TSH) and use TSH reductase/oxi-
dase systems for redox cycling [22]. The protozoa express
an iron superoxide dismutase (SOD) but not a manganese
SOD, and they have peroxidoxins for handling oxidative
stress [23-26]. Nonetheless, oxidant resistance in these
parasites are inducible [27], and one expects these systems
are susceptible to inactivation by oxidant species similar
to other eukaryotes.

Resistance to nitric oxide has been described in E. coli and
M. tuberculosis. Resistant isolates have been associated
with a more severe outcome of disease than that caused by
non-resistant strains [28]. However, natural NO• resist-
ance in Leishmania spp. isolates has not previously been
described. In the present study, we evaluated the effect of
NO• generated from NaNO2 (pH 5.0) on the viability of L.
(V.) braziliensis and L. (L.) amazonensis promastigotes.
NO• resistant Leishmania amastigotes multiplied signifi-
cantly better than nitric oxide-susceptible parasites during
infection of human macrophages. Furthermore, NO•

resistance was directly associated with lesion size, a clini-
cal measure of disease severity.

Methods
Parasites
L. (L.) amazonensis and L. (V.) braziliensis parasites were
obtained by needle aspiration of lesions from patients
with CL, DL or ML. Parasites for study were randomly
selected from frozen nitrogen Leishmania stocks by inves-
tigators blinded to the Leishmania species or clinical form
of leishmaniasis. Parasites were speciated by isoenzyme
electrophoresis and monoclonal antibodies as described.
This analysis was performed by Departamento de Bio-
quimica e Biologia Molecular, Instituto Oswaldo Cruz,
FIOCRUZ, Rio de Janeiro, Brazil [29].
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Isolation and cultivation of L. (V.) braziliensis and L. (L.) 
amazonensis
Parasite isolates L. (V.) braziliensis (n = 17) and L. (L.)
amazonensis (n = 11) were initially cultivated from patient
specimens in tubes with biphasic medium (NNN) consist-
ing of rabbit blood agar overlaid with liver infusion tryp-
tose (LIT), supplemented with 10% heat inactivated fetal
bovine serum medium (Sigma Chemical Co., St. Louis,
MO). Following isolation, parasite isolates were cryopre-
served. The time of storage of the selected strains was sim-
ilar (p > 0.05). The parasites selected for study had not
been previously passaged in liquid culture medium before
the beginning of the present study. After selection, para-
site isolates were expanded in Schneider's insect medium
(Sigma) pH 7.2 supplemented with 10% fetal bovine
serum (FBS) and 2% male human urine at 25°C (com-
plete Schneider medium).

Promastigote NO• susceptibility assays
Thymidine incorporation
L. (L.) amazonensis (n = 10) and L. (V.) braziliensis (n = 6)
promastigotes in log phase growth were adjusted to 2 ×
107 parasites/ml in Hanks' balanced solution (HBBS
Sigma, pH 5.0). Twenty µl aliquots containing 4 × 105 par-
asites were placed in 96-well U shaped plates containing
180 µl of 0 to 16 mM NaNO2 (freshly prepared NO•

donor) in Hanks Balanced Solution, pH 5.0. After 4 hours
incubation at 25°C, plates were centrifuged (700 × g for
10 minutes). The viability of the remaining parasites was
assessed by incubation for 20 hr in 200 µl of complete
Schneider's medium with 1 µCi of Thymidine (3H-TdR;
ICN Immunochemicals, Costa Mesa, CA, USA) to allow
them to enter logarithmic growth. Thymidine incorpora-
tion was assessed on a β counter.

MTT assay
L. (L.) amazonensis (n = 5) and L. (V.) braziliensis promas-
tigotes (n = 14) in log phase growth were adjusted to 5 ×
107 parasites/ml in Hanks' balanced solution (HBBS
Sigma, pH 5.0). Twenty-µl aliquots were incubated in 180
µl of 0 to 16 mM NaNO2(freshly prepared NO• donor) in
Hanks Balanced Solution, pH 5.0 in 96-well U shaped
plates. After 4 hrs incubation at 25°C, plates were centri-
fuged (700 × g for 10 minutes) and parasites were resus-
pended with 200 µl of complete Schneider medium. After
an additional 20 hrs at 25°C and centrifugation, parasite
viability was measured by incubation in 0.5 mg/ml of
MTT [3-(4,5-dimetthythiazol-2-yl)-2,5-diphenyltetiazo-
lium bromide] in Hanks solution, pH 7.0 at 25°C for 4
hrs, followed by dilution in an equal volume 0.04 N HCl
in isopropanol. Living mitochondria convert MTT to dark
blue formazan that is soluble in acid-isopropanol and
detectable on a microplate reader at 540 nm. The percent-
age of viability was calculated from the OD ratio of
untreated versus NO•-treated parasites × 100 [27]. For

each parasite isolate 3 experiments at least were per-
formed to test for NO• susceptibility. The thymidine
incorporation and MTT assays were done with 28 Leishma-
nia isolates of both species. Seven isolates were tested with
both methods.

The virulence of Leishmania spp. is highest in stationary
phase, or metacyclic organisms. Nonetheless the MTT and
[3H]-TdR uptake assays are most sensitive for log phase
organisms. We previously reported that these assays of vir-
ulence and oxidant sensitivity in log phase correlate with
oxidant sensitivity and virulence in stationary phase
organisms [27,30]. As such, viability assays were per-
formed using log phase promastigotes, whereas studies of
interactions with mammalian cells utilized stationary
phase organisms.

Macrophage cultures
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from the peripheral blood of three different healthy
human donors. Briefly, heparinized blood was diluted 1:2
with 0.15 M NaCl and overlaid on Ficoll Hypaque (LSM;
Organon Teknika corporation, Durham, NC, USA). After
centrifugation, mononuclear cells were collected at the
plasma – Ficoll interface, washed three times and resus-
pended in RPMI 1640 with 10% heat inactivated human
AB serum, 100 U penicillin/ml and 100 µg streptomycin/
ml (complete medium) (GIBCO BRL, Grand Island, NY).
Monocytes were separated from 1 × 106 PBMCs by adher-
ence to 8 well Lab Tek plates for 2 h at 37°C, 5% CO2,
non-adherent cells were removed by washing, and com-
plete medium was added. Adherent monocytes differenti-
ated to macrophages over six days incubation at 37°C in
5% CO2.

Macrophage infection
One NO•-resistant and one NO•-susceptible isolate each
of L. (V.) braziliensis and L. (L.) amazonensis (total 4 iso-
lates)were selected for the macrophage infection assays.
Three to 4 replicate assays were performed for each isolate.
Promastigotes were maintained at 25°C in Schneider's
insect medium (Sigma) pH 7.2 supplemented with 10%
fetal bovine serum (FBS) and 2% human male urine at
25°C (complete Schneider's medium). Promastigotes in
stationary- phase of growth were used in all experiments.
All experiments were performed in 3 assays for L. (V.) bra-
ziliensis and 4 assays for L. (L.) amazonensis using PBMC/
macrophages from 3 different healthy volunteers. The
same donors were used for the different species so that the
results are directly comparable. After Six-day monocyte-
derived macrophages were infected with a 10:1 ratio of
stationary – phase promastigotes to macrophages for 2
hours at 35°C, 5% CO2. Extracellular parasites were
removed by gentle washing and infected macrophages
were maintained for up to 96 h. Cells were stained with
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Giemsa and the infection levels were enumerated micro-
scopically by counting the infected cells and parasites per
100 macrophages by three independent observers,
blinded to the experimental conditions.

Epidemiological and clinical evaluations
Clinical characteristics of the patients such as age, lesion
size, Montenegro skin reaction, duration of disease and
clinical manifestation of leishmaniasis were determined
from clinical records after characterizing the NO• suscep-
tibility of isolates. Adequate data were available for four-
teen patients. Most patients were identified and diagnosed
at the Corte de Pedra Health Post, located in an endemic
area for cutaneous leishmaniasis situated in the southeast
of the state of Bahia, Brazil. The remainder of patients was
referred to the University Hospital Prof. Edgard Santos of
the Federal University of Bahia, Brazil. This study was
approved by the Ethical Committee of the Hospital Uni-
versitário Prof. Edgard Santos and an informed consent
was obtained from all participants or their parents or
guardians if patients were less than 18 years old.

Statistical analysis
Student's t-test was used to compare the age, lesion
appearance, and human macrophage infection studies.
Lesion size and Montenegro diameter were analyzed by
Mann-Whitney nonparametric test. Fischer's Exact test
was used to compare NO•-resistant versus NO•-suscepti-
ble L. (L.) amazonensis and L. (V.) braziliensis. An alpha of
5% (p ≤ 0.05) was considered for statistical significance
(two tailed). Statistical analysis was performed using
GraphPad Prism 3.0 (GraphPad software, San Diego, CA,
USA).

Results
Evaluation of Leishmania spp. promastigotes resistance 
to NO• and correlation with clinical disease
The susceptibility of L. (L) amazonensis (n = 11) and L. (V)
braziliensis (n = 17) promastigotes to NO• toxicity was
evaluated using two measures of parasite viability: first,
the rate of [3H]-thymidine incorporation into parasite
DNA, and second, a colorimetric measure of mitochon-
drial activity according to MTT metabolism to formazan.
Our preliminary titrations led us to a definition of NO•

susceptibility as measured viability that is less than 5% of
control parasites after exposure to 8 mM NaNO2. Using
this definition, we found that 73% (8 of 11) of the L. (L.)
amazonensis isolates and 18% (3 of 17) L. (V.) braziliensis
isolates were resistant to NO• (Table 1). Of the NO•-sus-
ceptible isolates, a titration of NaNO2 from 0.25 mM to 16
mM showed concentration-dependent killing of suscepti-
ble isolates with nearly 100% killing at 8 mM NaNO2. In
contrast, NO•-resistant L. (L.) amazonensis and L. (V.) bra-
ziliensis isolates remained viable even in 16 mM NaNO2
(Figure 1, Tables 2, 3, 4 and 5). The storage time in liquid

nitrogen of the NO•-susceptible isolates (mean ± SD = 6.6
± 3.2 years) was similar to the NO• resistant isolates (7.8
± 2.7 years), p = 0.3.

Infection in vitro of human macrophages
Two isolates each of L. (L.) amazonensis and L. (V.) bra-
ziliensis, one NO•-resistant and one NO•-susceptible were
evaluated for their ability to infect and proliferate within
culture-derived human macrophages in vitro. The data
demonstrate that NO•-resistant and NO•-susceptible L
(L.) amazonensis and L. (V.) braziliensis infected human
macrophages with similar efficacy, as demonstrated by a
similar degree of macrophage infection at 2 hours with all
isolates (Figure 2, p > 0.05). Beginning 24 h after infec-
tion, intracellular macrophage killing of NO•-susceptible
parasites of both Leishmania species was evident from the
declining parasite numbers. In contrast, NO•-resistant
parasites either maintained an unchanged infection level
[L. (V.) braziliensis] or multiplied [L. (L.) amazonensis].
Thus, at the 96 hr time point the numbers of intracellular
NO•-resistant L. (L.) amazonensis amastigotes was signifi-
cantly higher than NO•-susceptible parasites (mean ± SD
= 534 ± 164 versus 219 ± 75, p = 0.01). Similarly, the
numbers of intracellular NO•-resistant L. (V.) braziliensis
was significantly higher than NO•-susceptible parasites
(mean ± SD = 315 ± 56 versus 87 ± 3, p = 0.002) (Figure
2A and 2B). When the results were calculated as the per-
cent of cells infected, data revealed there were also signif-
icantly higher numbers of macrophages infected by NO•-
resistant compared to NO•-susceptible L. (L.) amazonensis
(mean ± SD = 68 ± 5.2 versus 47 ± 10, p = 0.008), and
higher numbers of macrophages infected with NO• –
resistant versus susceptible L. (V.) braziliensis (61 ± 4 ver-
sus 32 ± 5, p = 0.002). This suggests that parasites spread
to new cells in the macrophage monolayer in vitro (Figure
2C and 2D). Although we did not evaluate the mecha-
nisms, these data suggest that NO•-resistant amastigotes
survive and multiply in resting human macrophages bet-
ter than susceptible isolates.

Epidemiological and clinical evaluations
Clinical records were available for full analysis for 14 iso-
lates from patients with CL. Evaluation of these records
indicated that patients infected with NO•-resistant L. (L.)

Table 1: Relation between Leishmania species and NO-
resistance

Isolates Susceptible Resistant Total

L. amazonensis 3 8 (73%) 11
L. braziliensis 14 3 (18%) 17
Total 17 11 28

Differences between the proportions were statistically significant 
(Fisher Exact Test, p < 0.006)
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amazonensis or L. (V.) braziliensis isolates presented with a
larger ulcers (mean ± SD diameter = 43.2 ± 18 mm) than
patients who had NO•-susceptible parasites (18.0 ± 8
mm, p = 0.01;Figure 3). However, no significant differ-
ences between these patient groups were observed in the
time from first lesion detection by the patient to the time
of clinical evaluation by a physician (mean ± SD = 48 ± 34
days for NO•-sresistant versus 32 ± 25 days for NO•-sus-
ceptible isolates, p = 0.3). Although not significant possi-
bly due to small numbers, 50% of patients with ML, a
more severe form of disease, had NO•-resistant isolates
compared to 31% of the CL patients had NO•-resistant
isolates. Both isolates from patients with DL were NO•-
susceptible. There was no significant difference between
characteristics of the ulcer at initial presentation, patient
age, or size of the Montenegro skin reaction to Leishmania

antigen between patients harboring NO•-resistant versus
NO•-susceptible Leishmania isolates.

Discussion
In the current study we demonstrated for the first time
that some isolates of both L. (V.) braziliensis and L. (L.)
amazonensis promastigotes are resistant to killing by nitric
oxide. Additionally, we showed that the amastigotes from
two resistant isolates survived and multiplied better than
susceptible isolates in resting human macrophages in
vitro. Macrophages play a pivotal role in Leishmania infec-
tion. After phagocytosis, Leishmania promastigotes enter a
parasitophorous vacuole within which the macrophage
can provide a safe haven for the parasite to transform into
amastigotes and proliferate in a naïve host [6,31]. In an
immune host, macrophages can be activated by inflam-

Survival of L. (V.) braziliensis and L.(L.) amazonensis promastigotes in increasing concentrations of NO• measured by Thymidine incorporation (A and B) and colorimetric MTT assay (C and D)Figure 1
Survival of L. (V.) braziliensis and L.(L.) amazonensis promastigotes in increasing concentrations of NO• meas-
ured by Thymidine incorporation (A and B) and colorimetric MTT assay (C and D). Promastigotes in HBSS pH 5.0 
were exposed to increasing NaNO2 concentrations (0.25–16 mM) for 4 hours. Viability was measured by incorporation of 3H-
TdR or conversion of MTT of formazan as described in the Methods section. Data in panels A and B represent mean ± SEM 
percentage survival for (1A) 8 resistant L. (L.) amazonensis and two resistant L. (V.) braziliensis isolates, (1B) two susceptible L. 
(L.) amazonensis and 4 susceptible L. (V.) braziliensis isolates as measured by thymidine incorporation. Data in panels C and D 
represent the mean ± SEM MTT conversion for (1C) 3 NO•- resistant L. (L.) amazonensis and 2 NO•-resistant L. (V.) braziliensis 
isolates, or (1D) 2 susceptible L. (L.) amazonensis and 12 susceptible L. (V.) braziliensis isolates.
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Table 3: Thymidine incorporation assay of susceptible L (L.) amazonensis

L (L.) 
amazonensis

NaNO2 Concentration (mM)

0 0.25 0.5 1 2 4 8 16

8653 1227 1244 513 262 174 102 81 61
9667 1364 1595 1255 1078 200 65 75 54

L. (V.) 
braziliensis

NaNO2 Concentration (mM)

0 0.25 0.5 1 2 4 8 16

13323 2339 3217 1636 215 92 88 76 83
Lb-001 2213 2368 1978 1319 830 482 268 242
13352 1879 1227 1318 870 868 474 326 196
13468 1626 1796 169 78 73 85 89 97

4 × 105 L. (L.) amazonensis and L. (V.) braziliensis promastigotes in HBSS pH 5.0 were exposed to increased NaNO2 concentrations (0.25–16 mM) for 
4 hours. The Leishmania were then washed, distributed in parasite growth medium in the presence of 1 µci/ml of 3H-TdR. After 20 hours of 
incubation, the incorporation of Thymidine was measured in Beta scintillation counter (CPM). Data are mean ± SD of NO•-resistant (Table 2) or 
NO•-susceptible (Table 3) isolates of L. (L.) amazonensis and L. (V.) braziliensis

Table 2: Thymidine incorporation assay of resistant L. (L.) amazonensis and L. (V.) braziliensis promastigotes to NO (NaNO2) donor in 
vitro.

L (L.) 
amazonensis

NaNO2 Concentration (mM)

0 0.25 0.5 1 2 4 8 16

10184 1804 2205 3077 2373 1284 1426 1648 1435
436 1683 1928 2189 2544 2704 3755 4366 4047

10432 3874 4240 4285 3914 3453 3312 2880 2450
10048 826 1008 1167 1150 1243 1159 1114 1549
10076 1644 2094 2870 2090 1652 1860 3874 3817
484077 788 988 928 961 1009 1158 873 1674
10047 5765 7551 5789 4416 9139 7024 19181 17839

AC 5995 10034 9731 7218 6162 16305 10955 11195

L. (V.) 
braziliensis

NaNO2 Concentration (mM)

0 0.25 0.5 1 2 4 8 16

13314 1626 2407 1829 1923 2340 3902 2950 2677
H.R 1958 1865 2367 2549 1993 2442 2909 3511
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Table 5: MTT colorimetric assay of susceptible L (L.) amazonensis

L (L.) 
amazonensis

NaNO2 Concentration (mM)

0 0.25 0.5 1 2 4 8 16

9667 0.488 0.682 0.463 0.373 0.335 0.25 0.027 0.003
9986 0.194 0.278 0.263 0.171 0.197 0.049 0.01 0.002

L. (V.) 
braziliensis

NaNO2 Concentration (mM)

0 0.25 0.5 1 2 4 8 16

11155 0.389 0.478 0.488 0.432 0.113 0.025 0.007 0.004
13396 0.292 0.269 0.28 0.325 0.224 0.038 0.012 0.009
13323 0.407 0.265 0.382 0.684 0.228 0.157 0.033 0.014
Lb 001 0.249 0.178 0.191 0.167 0.169 0.125 0.091 0.03
9291 0.628 0.645 0.437 0.253 0.101 0.033 0.051 0.02
13690 0.558 0.646 0.448 0.326 0.13 0.055 0.023 0.073
14183 0.178 0.166 0.168 0.096 0.048 0.035 0.017 0.009
9139 0.446 0.277 0.221 0.305 0.182 0.093 0.047 0.012
13183 0.598 0.39 0.38 0.373 0.02 0.036 0.014 0.007
13548 0.547 0.58 0.894 0.584 0.382 0.246 0.053 0.032
14349 0.812 0.556 0.426 0.404 0.208 0.108 0.085 0.086
14808 0.261 0.231 0.251 0.160 0.096 0.074 0.024 0.08

1 × 106 L. (L.) amazonensis and L. (V.) braziliensis promastigotes contained were exposed for 4 hours to increasing concentrations of the NO• donor 
NaNO2 (0.25–16 mM) in HBSS pH 5.0. The cells were then washed and distributed in parasite growth medium for 20 hours. After this time the 
supernatants were removed and the parasites were incubated in HBSS, pH 7.0 plus 10 µl of MTT for 4 hours. Viability was a measured by the 
conversion of MTT to formazan and is expressed as the OD at 540 nm. Data are mean ± SD of NO•- resistant Leishmania isolates (Table 4) or NO• 

susceptible Leishmania isolates (Table 5).

Table 4: MTT colorimetric assay of resistant L. (L.) amazonensis and L. (V.) braziliensis promastigotes to NO (NaNO2) donor in vitro.

L (L.) 
amazonensis

NaNO2 Concentration (mM)

0 0.25 0.5 1 2 4 8 16

10184 0.558 0.678 0.729 0.693 0.726 0.989 0.824 0.518
436 0.172 0.231 0.197 0.257 0.207 0.197 0.216 0.265

10432 0.098 0.081 0.072 0.158 0.131 0.153 0.154 0.112

L. (V.) 
braziliensis

NaNO2 Concentration (mM)

0 0.25 0.5 1 2 4 8 16

13314 0.379 0.455 0.404 0.421 0.438 0.462 0.506 0.47
14214 0.242 0.248 0.285 0.261 0.268 0.294 0.295 0.279
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Infection of human macrophages with resistant or susceptible L. (V.) braziliensis or L. (L.) amazonensis isolatesFigure 2
Infection of human macrophages with resistant or susceptible L. (V.) braziliensis or L. (L.) amazonensis isolates. Human Mφ from 
3 healthy donors were infected with NO•-susceptible or NO•-resistant L. (L.)amazonensis or L. (V.) braziliensis and evaluated at 
the designated time points for the level of intracellular infection. After monolayers were stained with Giemsa, the level of infec-
tion was expressed as number of amastigotes per 100 Mφ (A, B), and as the percentage of infected Mφ (C, D) for L. (L.) ama-
zonensis (A, C) or L. (V.) braziliensis isolates (B, D). The data are expressed as the mean ± SEM from 3 separate experiments 
for L. (V.) braziliensis and the mean ± SEM from 4 experiments for L. (L.) amazonensis. Parasites were used in stationary phase of 
growth. Statistical analysis was performed using the paired t-test.
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matory cytokines to produce toxic metabolites that result
in intracellular killing of Leishmania [32], or their micro-
bicidal capacity can be dampened or abrogated by sup-
pressive cytokines, leading to disease symptoms [33].
Specifically, TNF-α and IFN-γ elaborated by macrophages
or T cells synergize to up-regulate iNOS and the NADH
oxidase, with the resultant production of reactive nitrogen
intermediates (RNI) and reactive oxygen intermediates
(ROI), respectively, that mediate killing of intracellular
Leishmania [32-36]. Macrophages can alternatively pro-
duce IL-10 and TGF-β that inhibit leishmanicidal activity.
Both of these cytokines enable the parasite to grow locally
and disseminate to distant sites [37-39].

Many prior studies focus on the host immune response
during leishmaniasis and the ability of host cells/
cytokines to influence the outcome of Leishmania infec-
tion. During the current study we focused instead on the
innate susceptibility of the parasite to leishmanicidal mol-
ecules, and their ability to resist to a host microbicidal
response. We found that human L. (V.) braziliensis and L.
(L.) amazonensis isolates differ in their innate susceptibil-
ity to killing by RNI in vitro, falling into two groups based
on their resistance to nitric oxide. Susceptible isolates of
both Leishmania species were nearly totally killed by 8 mM
of acidified NaNO2, whereas NO•-resistant isolates
remained viable even in 16 mM NaNO2. These divisions

were biologically relevant, in that patients with NO•-
resistant cutaneous isolates produced significantly larger
cutaneous ulcers than NO•-susceptible Leishmania spp.
isolates. Other clinical parameters were not different
between NO•-resistant and NO•-susceptible Leishmania,
arguing against a spurious association. These clinical data
suggest that NO•-resistance may lead to more aggressive
forms of clinical disease. Differences in the time of storage
in liquid nitrogen or in the length of in vitro promastigote
cultivation could not explain our observations, since both
NO•-resistant and NO•-susceptible parasites had similar
time of storage and were expanded in growth medium
only after selection to the present study.

Interestingly, a higher proportion of L. (L.) amazonensis
isolates than L. (V.) braziliensis isolates were NO•-resistant
(73% versus 18%, respectively). A comparable published
study showed that promastigotes and amastigotes of L.
(L.) enriettii were more sensitive to NO• than L. (L.) major
[21]. In conjunction with our data, this suggests that there
are inter- and intra-species variations in susceptibility to
toxic nitrogen products.

Isolate-specific differences in NO• susceptibility are con-
sistent with the observed high degree of DNA polymor-
phism between isolates of L. (V.) braziliensis from several
endemic areas of Brazil, documented in literature reports.
Techniques used to discern these polymorphic sequences
include multilocus enzyme electrophoresis (MLEE) and
internal transcribed spacers (ITS) between the small and
large subunits of the rRNA gene and polymorphic DNA
amplification (RAPD) [40-42]. Utilizing polymorphic
DNA amplification (RAPD) we reported DNA polymor-
phisms in L. (V.) braziliensis isolates from Corte de Pedra
(CP), Bahia, the same location from which the current
patient isolates were derived. In addition to finding poly-
morphism among the L. (V.) braziliensis isolates, we pub-
lished that certain genotypes are associated with specific
forms of leishmaniasis [42]. The current study extends
these observations to suggest that there are biological dif-
ferences between L. (V.) braziliensis and L. (L.) amazonen-
sis isolates that correlate with the clinical course of disease.
Murine resistance to Leishmania infections depends at
least in part on NO•-mediated intracellular killing of par-
asites through the action of iNOS [type 2 NO•-synthase
(NOS2)]. However, the contribution of iNOS to parasite
killing in human macrophages remains debated. Some
reports claim a role for nitric oxide in killing of intracellu-
lar M. tuberculosis by human alveolar macrophages
[18,43]. Our group and another has published evidence
for a role of nitric oxide in macrophage microbicidal activ-
ity toward L. (L.) chagasi/infantum [19,44]. Nonetheless
prior studies have reported difficulty in demonstrating
NO• production by human macrophages [17].

Association between NO•-susceptibility of the Leishmania isolate and size of the initial cutaneous lesion in CL patientsFigure 3
Association between NO•-susceptibility of the Leishmania 
isolate and size of the initial cutaneous lesion in CL patients. 
Patients (n = 14) with cutaneous leishmaniasis were assessed 
for lesion size at the time of clinical presentation. This is 
graphed with the correlating 4 NO•-resistant Leishmania (3 
L (L.) amazonensis and 1 L. (V.) braziliensis or 10 NO•-
susceptible Leishmania (2 L (L.) amazonensis and 8 L (V.) 
brazilienis), (p = 0.01, Mann-Whitey nonparametric test).
Page 9 of 12
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In addition to NO• derived from the macrophage, the
Leishmania spp. themselves are able to produce NO• [45-
47]. It is likely that the parasite additionally has innate
mechanisms for NO• resistance in order to avoid toxicity
from endogenous NO•. As such, the toxic effects of exoge-
nous NO• generated by macrophages or added experi-
mentally would be expected to represent the sum of NO•

generated by the parasite plus exogenous NO•, minus the
amount of NO• scavenged or inactivated by innate para-
site defense mechanisms. We hypothesize that such anti-
NO• defenses may be utilized by the parasite for anti-oxi-
dant defense in human infections. This hypothesis is sup-
ported by our observation that the degree of NO•

resistance correlates with the severity of lesion.

We have previously reported that L. chagasi isolates from
Brazilians with visceral leishmaniasis are susceptible to
killing by NO• [19]. We showed in the current study that
Leishmania isolates obtained from of humans with CL dif-
fer in their susceptibility to NO•. NO•-resistant Leishmania
isolates were found to enter macrophages at a similar rate
as susceptible strains, but they resisted intracellular killing
by 72 to 96 h after infection. The timing of intracellular
killing is consistent with the kinetics of iNOS induction,
which acts 48–72 hours after infection [19]. We hypothe-
size that NO• resistance is one of the mechanisms enhanc-
ing parasite survival. Alternatively or additionally, NO•-
resistant parasite isolates could inhibit NO• production by
macrophages, or other killing mechanisms such as ROI.
Importantly, it has been shown that M. bovis inhibits NO•-
mediated killing by murine macrophages [48], as do Cryp-
tococcus neoformans [49], Trypanosoma cruzi [50], as well, as
L. (L.) amazonensis infection [51]. Other studies have
reported that amastigote surface enzymes can inhibit NO•

production and thereby reduce leishmanicidal activity
[52,53]. Furthermore, the LPG-associated kinetoplastid
membrane protein 11 has been reported to suppress iNOS
activity, because it contains monomethylarginine resi-
dues, a structural analog of L-arginine, a known inhibitor
of iNOS [31,54].

The meaning of differences in NO• susceptibility amongst
different Leishmania spp. isolates is not entirely straight-
forward. The finding that NO•-resistant Leishmania exhibit
improved survival within human macrophages may indi-
cate evasion of iNOS catalyzed toxicity as in murine mac-
rophages and a role for iNOS in control of cutaneous
leishmaniasis. Alternatively, since NO• can also play a role
in signaling within the infected cell, it is possible that NO•

resistant isolates are changing the intracellular signaling,
or resistant to alternate microbicidal effector molecules
not tested here. It seems likely that NO• resistance may
contribute to the apparent increased virulence of these
parasites in a human host, based on the differences in
severity of the clinical parameters evaluated in the present

study (significantly larger lesion size, and trend toward
more resistant isolates from ML compared to CL patients).
Most certainly, factors other than NO• resistance deter-
mine in part the differences in lesion size. Such factors
could include the magnitude of parasite inoculum, the
host immune response, and the effect of saliva. Nonethe-
less, it is quite interesting that the NO• resistance corre-
lates with disease severity in our small study. Future
studies are needed to better determine the clinical effects
of NO• resistance on human infection and response to
therapy.

Conclusion
These data suggest that nitric oxide-resistance of Leishma-
nia isolates confers a survival benefit for the parasites
inside the macrophage, and possibly exacerbates the clin-
ical course of human leishmaniasis.
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