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Abstract

Background: Maternal antibody is the major form of protection against disease in early life;
however, its presence interferes with active immunization of offspring. In order to overcome the
immunosuppression caused by maternal antibody, several immune strategies were explored in this
paper using mouse model and influenza vaccines.

Results: The results showed that: i) when the offspring were immunized with the same vaccine as
their mothers, whether inactivated or DNA vaccine, the presence of maternal antibody inhibited
offspring immune response and the offspring could not be protected from a lethal influenza virus
infection; ii) when the offspring, born to mothers immunized with inactivated vaccine, were
immunized with NA DNA vaccine, the interference of maternal antibody were overcome and the
offspring could survive a lethal virus challenge; iii) when the offspring were immunized with different
DNA vaccine from that for their mothers, the interference of maternal antibody were also
overcome. In addition, high-dose inactivated vaccine in maternal immunization caused partial
inhibition in offspring when the offspring were immunized with HA DNA vaccine, while lower dose
caused no significant immunosuppression.

Conclusion: To avoid the interference of maternal antibody in influenza vaccination of offspring,
mothers and their offspring shall not be immunized with the same vaccine. If mothers are
immunized with inactivated vaccine, NA DNA vaccine for the offspring shall be effective; and if
mothers are immunized with HA (NA) DNA, NA (HA) DNA for the offspring shall be effective.

Background vention of influenza is currently achieved by subcutane-
Influenza is a highly contagious acute respiratory disease ~ ous injection of inactivated trivalent influenza vaccine.
caused by infection of the host respiratory tract with influ-  However, because of the immaturity of immune system,
enza virus [1]. The virus is transmitted in the population  effective immune response could not be induced in new-
of all the age groups, especially in the newborns. The pre-  borns and therefore vaccination in this age group could
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not get a satisfactory effect [2,3]. The problem can be
solved well by maternal immunization, which can pro-
vide the offspring with high titer of maternal antibody [4].
Maternal immunization is beneficial to the offspring,
whereas, it also brings the problem of immunosuppres-
sion. The presence of the maternal antibody inhibits the
offspring immune response to specific antigen [5-7], and
the long-lasting immunosuppression often delays the vac-
cination of the offspring. In young infants, a period sus-
ceptible to influenza exists when the maternal antibody
titer is too low to provide immunoprotection but is
enough to inhibit the active immune response to vaccines.
Thus, it is necessary to develop an effective immune strat-
egy to overcome the immunosuppression caused by
maternal antibody.

In this paper, we explored the interference of maternal
antibody in offspring immune response to influenza vac-
cines as well as the immune strategy to overcome the
interference. We found that, when the offspring were
immunized with the same vaccine as their mothers,
whether inactivated or DNA vaccine, the active immune
response in offspring would be inhibited by the presence
of maternal antibody. However, the interference could be
overcome under the following situations: immunization
of offspring with Neuraminidase (NA) DNA vaccine when
the mother were once immunized with inactivated vac-
cine, or immunization of offspring with different DNA
vaccine from that for their mothers, i.e. Hemagglutinin
(HA) DNA or NA DNA. These results provided an experi-
mental basis for overcoming the immunosuppression
caused by maternal antibody in clinic.

http://www.biomedcentral.com/1471-2334/7/118

Results

Maternal immunization with inactivated vaccine inhibited
the effect of inactivated vaccine on protection of offspring
In order to explore whether maternal immunization with
inactivated influenza vaccine interferes with the immune
effect of inactivated influenza vaccine in offspring, we per-
formed the following test. The female BALB/c mice aged
6-8 weeks were divided into seven groups. In control
group, all the mice were unimmunized, including their
natal offspring. In three of the six experimental groups,
the female mice were unimmunized, but their offspring
were immunized with 1.0 pg, 0.1 pg and 0.01 pg of inac-
tivated influenza virus A/PR/8/34 vaccine at age of 1 week
respectively, and boosted 3 weeks later with the vaccine at
the same dose as primed. In other three experimental
groups, the female mice were immunized twice, 3 weeks
apart, with 1.0 pg, 0.1 ug and 0.01 pg of inactivated influ-
enza vaccines respectively, and the offspring were immu-
nized twice at age of 1 and 4 weeks respectively, with the
same vaccine at the same doses as those for their mothers.
The sera of offspring were collected by tail vein bleeding 3
weeks after primary immunization and 1 week after
booster respectively and determined for IgG antibody titer
by ELISA. As shown in Table 1, when the mothers were
immunized with 1.0 pg and 0.1 pg of inactivated vaccine,
the antibody titers in their offspring after booster were
lower than those after the primary immunization. How-
ever, when the female mice were immunized with 0.01 pg
of inactivated vaccine, the antibody titers in their off-
spring after booster were slightly higher. In contrast, the
offspring of the unimmunized mothers had higher anti-
body levels after booster than after the primary immuni-
zation.

Table I: Influence of maternal antibodies on protective effect of offspring immunized with the same inactivated vaccine as their

mothers?
Dose (ug) Serum IgG titerst in offspring ELISA (2")¢ Lung virus titersb  Survival offspring/Tested offspring
(log,o TCIDsy) (3 weeks)

Female mice Offspring 2| days after primary immunization 7 days after booster

1.00 1.00 14.8 £ 0.50 13.3+£0.30 3.7+0.00 0/7

0.10 0.10 13.8 £0.90 11.5+0.60 47+0.23 0/7

0.01 0.0l 9.7 £ 0.60 1.3 £0.50 48+0.71 0/7
Unimmunized 1.00 14.3 + 0.60 16.7 £ 0.60 ND* 717*
Unimmunized 0.10 12.7 + 0.60 16.0 £ 1.00 3.4 + 0.54* 6/6*
Unimmunized 0.01 1.3 +0.50 13.0 £ 0.00 3.4 + 0.54* 5/6*
Unimmunized Unimmunized <l <l 54+0.10 0/7

2 The female mice were immunized twice, 3 weeks apart, with various doses of inactivated vaccine. The offspring were immunized at ages of | and
4 weeks, respectively, with the same vaccine as their mothers. Serum samples from offspring were collected 3 weeks after primary immunization
and | week after booster. The serum antibody titers were measured by ELISA. One week after booster, the offspring were challenged with a lethal
dose of A/PR/8/34 (20 x LDs). Lungs were taken out from at least three mice in each group 3 days after challenge for virus titration by standard
MDCK assay. Survival rates of mice were measured 3 weeks after challenge.

b Values represent mean + S.D. of each group.

¢ The serum samples were diluted 2-fold serially and "n" represents the dilution factor.

* Significant difference (p < 0.05). ND: virus not detected
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All the offspring in experimental groups were challenged
with a lethal dose (20 x LDs,) of influenza virus strain A/
PR/8/34 by intranasal drip 1 week after the booster. At
least three offspring in each group were dissected 3 days
after challenge, and their lungs were taken out for virus
titration. The rest offspring were observed for 3 weeks to
calculate the survival rate. As shown in Table 1, when both
the mothers and their offspring were immunized twice
with inactivated influenza vaccine, regardless of the doses,
all the offspring showed high lung virus titer and died
within 2 weeks after challenge. However, when the female
mice were unimmunized, their offspring immunized with
1.0 ug, 0.1 ugand 0.01 pg of inactivated influenza vaccine
had the survival rates of 100%, 100% and 83.3% respec-
tively (Table 1 and Figure 1A), with significantly lower
lung virus titers than offspring in control group. All off-
spring in control group died within 7 days after challenge,
and their lung virus titers were the highest among the
seven groups.

The above-mentioned results indicated that the maternal
immunization with inactivated vaccine inhibited the
immune response induced by the same vaccine in off-
spring.

Maternal immunization with DNA vaccine inhibited the
effect of the same DNA vaccine on protection of offspring
In order to explore whether the maternal immunization
with DNA inhibits the immune effect of the same vaccine
in offspring, we performed the following test. The female
BALB/c mice aged 6-8 weeks were divided into five
groups. In control group, both the female mice and their
offspring were unimmunized. In two of the four experi-
mental groups, the female mice were unimmunized, but
their offspring were immunized at age of 1 week with 30
pg of HA DNA and 30 pg of NA DNA, respectively, and
boosted 3 weeks later with the same DNA vaccine at the
same dose as primed. In other two experimental groups,
the female mice were immunized twice (at a 3-week inter-
val) with 30 pg of HA DNA and 30 pg of NA DNA, respec-
tively, and the offspring were immunized twice at ages of
1 and 4 weeks respectively, with the same DNA vaccine at
the same dose as that for their mothers.

The sera of offspring were collected by tail vein bleeding
both 3 weeks after primary immunization and 1 week
after booster and determined for HA or NA antibody titer.
As shown in Table 2, when both the mothers and their off-
spring were immunized with HA DNA, the HA antibody
titers in offspring after booster were lower either than
those after primary immunization or than those of off-
spring born to unimmunized mothers. Similarly, when
the mothers and their offspring were immunized with NA
DNA, the NA antibody titers of offspring after booster
were also lower either than those after primary immuniza-
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Figure |

Survival of offspring after lethal A/PR8/34 virus challenge. The
offspring were vaccinated as described in result section. One
week after second immunization, the offspring were chal-
lenged with a lethal dose of A/PR/8/34 (20 x LDg). Survival
rates of mice were measured after viral challenge. Panel A:
(A1) Immunization of both mothers and the offspring with
1.0 pg of inactivated vaccine; (A2) Immunization of both
mothers and the offspring with 0.1 pg of inactivated vaccine;
(A3) Immunization of both mothers and the offspring with
0.01 pg of inactivated vaccine; (A4) Immunization of offspring
born to unimmunized mothers with 1.0 pg of inactivated vac-
cine; (A5) Immunization of offspring born to unimmunized
mothers with 0.1 ug of inactivated vaccine; (A6) Immuniza-
tion of offspring born to unimmunized mothers with 0.01 pg
of inactivated vaccine; (A7) Negative control. Panel B:
(Bl)Immunization of both mothers and the offspring with 30
pg of HA DNA; (B2) Immunization of offspring born to unim-
munized mothers with 30 pg of HA DNA; (B3) Immunization
of both mothers and the offspring with 30 g of NA DNA;
(B4) Immunization of offspring born to unimmunized moth-
ers with 30 pug of NA DNA; (B5) Negative control. Panel C:
(CIl) Immunization of mothers with 1.0 ng of inactivated vac-
cine and the offspring with 30 ug of HA DNA; (C2) Immuni-
zation of mothers with 0.1 g of inactivated vaccine and the
offspring with 30 pug of HA DNA vaccine; (C3) Immunization
of mothers with 0.01 pg of inactivated vaccine and the off-
spring with 30 pg of HA DNA; (C4) Immunization of moth-
ers with 1.0 ug of inactivated vaccine and the offspring with
30 ug of NA DNA; (C5) Immunization of mothers with 0.1
g of inactivated vaccine and the offspring with 30 pug of NA
DNA; (Cé6)Immunization of mothers with 0.01 pLig of inacti-
vated vaccine and the offspring with 30 g of NA DNA; (C7)
Negative control. Panel D: (D) Immunization of mothers
with 30 pg of HA DNA and the offspring with 30 pug of NA
DNA; (D2) Immunization of mothers with 30 pug of NA DNA
and the offspring with 30 pg of HA DNA; (D3) Negative con-
trol. *Significant differences (p < 0.05) compared to negative
controls as determined by Log Rank test.
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Table 2: Influence of maternal antibodies on protective effect of offspring immunized with the same DNA vaccine as that for their

mothers?
Serum IgG titersb in offspring
Plasmid ELISA (2n)c NI assay (2n)c Lung virus Survival offspring/
titersb Tested offspring
(log,o TCIDsg) (3 weeks)
Plasmid for Plasmid for 21 days after primary 7 daysafter 21| days after primary 7 days after
female mice offspring immunization booster immunization booster
30 ug HA 30 ug HA 15.0 £ 0.00 13.3 £ 0.60 43+0.35 0/7
Unimmunized 30 pug HA 11.3+0.50 14.3 £ 0.50 4.0 £ 0.58* 5/7*
30 pg NA 30 pg NA 5.6 £ 0.90 3.3+0.60 4.0 +£0.70 2/7
Unimmunized 30 g NA 4.6 £ 0.60 8.5+ 0.70 2.8 + 0.35% 717*
Unimmunized  Unimmunized <l <l <3 <3 5.7+ 0.00 0/7

2 Female mice were immunized twice, 3 weeks apart, with 30 ng HA DNA or 30 ug NA DNA. The offspring were immunized at ages of | and 4
weeks, respectively, with the same vaccine as their mothers. Serum samples from offspring were collected 3 weeks after primary immunization and
| week after booster. The anti-HA antibody titers were measured by ELISA. The anti-NA antibody titers were measured by NI assay. One week
after booster, the offspring were challenged with a lethal dose of A/PR/8/34 (20 % LDs;). Lungs were taken out from at least three mice in each
group 3 days after challenge for virus titration by standard MDCK assay. Survival rates of mice were measured 3 weeks after challenge.

b Values represent mean * S.D. of each group.

¢ The serum samples were diluted 2-fold serially and "n" represents the dilution factor.

*Significant difference (p < 0.05)

tion or than those of offspring born to unimmunized
mothers. In contrast, offspring born to unimmunized
mothers had higher antibody titers after booster than
those after primary immunization with either HA or NA
DNA.

The offspring in all groups were challenged to evaluate the
immune protection by lung virus titers and survival rates,
as described above. As shown in Table 2, when both the
female mice and their offspring were immunized with HA
DNA, the survival rate of offspring was 0%; and when
both with NA DNA, the survival rate of offspring was
28.6%. However, when the female mice were unimmu-
nized, the offspring immunized with HA DNA and NA
DNA showed the survival rates of 71.4% and 100%,
respectively (Table 2 and Figure 1B), and they had signif-
icantly lower lung virus titers than the offspring in control
group, and lower titers than those born to immunized
mothers as well.

The above-mentioned results indicated that the maternal
antibody induced by DNA vaccine inhibited the immune
effect of the same DNA vaccine on protection of offspring.

Maternal immunization with inactivated vaccine partially
inhibited the effect of HA DNA vaccine on protection of
offspring

The female BALB/c mice aged 6-8 weeks were divided
into four groups. In control group, both the female mice
and their offspring were unimmunized. In the three exper-
imental groups, the female mice were immunized twice, 3

weeks apart, with 1.0 pg, 0.1 pg and 0.01 pg of inactivated
influenza vaccine respectively, and their offspring were
immunized with 30 pg of HA DNA at age of 1 week and
boosted 3 weeks later.

The sera of offspring were collected by tail vein bleeding 3
weeks after primary immunization and 1 week after
booster respectively and determined for HA antibody titer
by ELISA. As shown in Table 3, when the mothers were
immunized with 1.0 pg of inactivated vaccine, the anti-
body titer in offspring after booster was lower than that
after primary immunization. When the mothers were
immunized with 0.1 pg and 0.01 pg of inactivated vac-
cine, the antibody titer in offspring after booster were only
slightly higher than those after primary immunization.
The offspring in all groups were challenged with a lethal
dose of influenza virus as described above. As shown in
Table 3, when the female mice were immunized with 1.0
pg and 0.1 pg of inactivated vaccine and their offspring
with HA DNA, the protective rates of offspring were 50%
and 42.8% respectively (p > 0.05). However, when the
female mice were immunized with 0.01 ug of inactivated
vaccine, the protective rate of offspring was 85.7% (p <
0.05) (Table 3 and Figure 1C). The offspring in the three
experimental groups had significantly lower lung virus tit-
ers than control mice, and the offspring born to the moth-
ers immunized with 0.01 pg of inactivated vaccine had the
lowest titer among the three groups. The results indicated
the dose-dependent inhibition of maternal immunization
with inactivated vaccine on immunization of offspring
with HA DNA.
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Table 3: Protection against a lethal influenza virus challenge in offspring immunized with DNA vaccine born to the mothers

immunized with inactivated vaccine2

Serum IgG titersb in offspring

Dose (ug) of Plasmid for ELISA (2n)< NI assay (2")¢ Lung virus Survival
Inactivated offspring titersb offspring/Tested
vaccine for (log,o TCIDsg) offspring
female mice (3 weeks)

21 days after primary 7 days after 21 days after primary 7 days after
immunization booster immunization booster
1.00 30 pg HA 14.8 + 0.50 13.3 £0.30 3.3 £ 0.35% 3/6
0.10 30 pg HA 11.7 £ 0.50 12.5 £ 0.60 3.8+ 0.23*% 317
0.01 30 pg HA 11.3 £0.60 13.0 £ 0.00 30+£071% 6/7*
1.00 30 ug NA 4.3 +0.60 7.0 £ 1.00 1.9 + 0.58* 717*
0.10 30 pug NA 3.7 £ 0.60 7.2 +0.80 I.5 +0.24* 717*
0.01 30 pug NA 4.3 £0.60 8.0+ 1.00 0.9 + 0.83* 6/6*
Unimmunized ~ Unimmunized <l <l <3 <3 53+035 0/7

2 Female mice were immunized twice, 3 weeks apart, with various doses of inactivated vaccine. The offspring were immunized with 30 ug HA or 30
ng NA at ages of | and 4 weeks respectively. Serum samples from offspring were collected 3 weeks after primary immunization and | week after
booster. The anti-HA antibody titers were measured by ELISA. The anti-NA antibody titers were measured by NI assay. One week after booster,
the offspring were challenged with a lethal dose of A/PR/8/34 (20 x LDsg). Lungs were taken out from at least three mice in each group 3 days after
challenge for virus titration by standard MDCK assay. Survival rates of mice were measured 3 weeks after challenge.

b Values represent mean * S.D. of each group.

¢ The serum samples were diluted 2-fold serially and "n" represents the dilution factor.

*Significant difference (p < 0.05)

Maternal immunization with inactivated vaccine could not
inhibit the effect of NA DNA vaccine on protection of
offspring

The BALB/c mice aged 6-8 weeks were divided into four
groups. In control group, both the female mice and their
offspring were unimmunized. In three experimental
groups, the female mice were immunized twice, 3 weeks
apart, with 1.0 ug, 0.1 pg and 0.01 pg of inactivated influ-
enza vaccine respectively, and their offspring were immu-
nized with 30 ug of NA DNA at age of 1 week and boosted
3 weeks later.

The sera of offspring were collected by tail vein bleeding
both 3 weeks after primary immunization and 1 week
after booster and determined for NA antibody titer by NI
assay. As shown in Table 3, the NA antibody titers of off-
spring after booster were much higher than those after pri-
mary immunization. The offspring in experimental
groups were challenged with a lethal dose of influenza
virus as described above. After immunized with NA DNA,
all the offspring born to the immunized mothers showed
a survival rate of 100% (Table 3 and Figure 1C), and cor-
respondingly, their lung virus titers were far lower than
that in control group. The results showed no influence of
maternal immunization with inactivated vaccine on
immunization of offspring with NA DNA.

Maternal immunization with one kind of DNA vaccine
could not inhibit the effect of another kind of DNA vaccine
on protection of offspring

In order to explore whether immunization of female mice
and their offspring with different DNA vaccines could
overcome the inhibition of maternal antibody, we per-
formed the following test. The BALB/c mice aged 6-8
weeks were divided into three groups. In control group,
both the female mice and their offspring were unimmu-
nized. In one experimental group, the female mice were
immunized twice, 3 weeks apart, with 30 pug of HA DNA,
and their offspring were immunized with 30 pg of NA
DNA at age of 1 week and boosted 3 weeks later. In
another experimental group, the female mice were immu-
nized twice, 3 weeks apart, with 30 pg of NA DNA, and
their offspring were immunized with 30 pg of HA DNA at
age of 1 week and boosted 3 weeks later.

The sera of offspring were collected by tail vein bleeding
both 3 weeks after primary immunization and 1 week
after booster and determined for HA or NA antibody titer.
As shown in Table 4, when the mothers were immunized
with NA DNA, and their offspring with HA DNA, the HA
antibody titers of offspring after booster were higher than
those after primary immunization. Similarly, when the
mothers were immunized with HA DNA, and their off-
spring with NA DNA, the NA antibody titers of offspring
after booster were higher than those after primary immu-
nization. The offspring were challenged with a lethal dose
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Table 4: Protection against a lethal influenza virus challenge in offspring immunized with different DNA vaccine from that for their

mothers 2
Serum IgG titers® in offspring

Plasmid for Plasmid for ELISA (2n)< NI assay (2n)¢ Lung virus Survival offspring/

female mice offspring titersb Tested offspring
(log,o TCIDsg) (3 weeks)
2| days after primary 7 daysafter 21| days after primary 7 days after
immunization booster immunization booster

30 ug HA 30 ug NA 4.3 £ 0.60 7.0+ 1.40 1.2 £ 0.57* 7/7*

30 ug NA 30 ug HA 12.0 + 0.60 15.7 £ 0.60 3.8+ 0.23* 7/7*
Unimmunized  Unimmunized <l <l <3 <3 55+0.16 0/7

2 Female mice were immunized twice, 3 weeks apart, with 30 ug HA DNA or 30 ug NA DNA. The offspring were immunized with the different
vaccines from that for their mothers at ages of | and 4 weeks respectively. Serum samples from offspring were collected 3 weeks after primary
immunization and | week after booster. The anti-HA antibody titers were measured by ELISA. The anti-NA antibody titers were measured by NI
assay. One week after booster, the offspring were challenged with a lethal dose of A/PR/8/34 (20 x LDsg). Lungs were taken out from at least three
mice in each group 3 days after challenge for virus titration by standard MDCK assay. Survival rates of mice were measured 3 weeks after challenge.

bValues represent mean * S.D. of each group.

non

¢ The serum samples were diluted 2-fold serially and "n" represents the dilution factor.

*Significant difference (p < 0.05)

of influenza virus as described above. As shown in Table
4, all the survival rates of offspring in the two experimen-
tal groups were 100% (also shown in Figure 1D), and cor-
respondingly, their lung virus titers were significantly
lower than that of offspring in blank control group. It
indicated that the immunization of female mice and their
offspring with different DNA vaccines could overcome the
interference of maternal antibody in offspring.

Discussion

Maternal immunization is the major form of protection
against many infectious diseases in early life, since IgG Ab
can transfer from pregnant women to their foetus through
placenta, colostrums and milk [8-11]. Both pregnant
women and young infants were found to be vulnerable to
serious sequelae of influenza infection [4]. Vaccination in
pregnant women is beneficial to both mother and infant.
It has been shown that, after women in the last trimester
of pregnancy were given trivalent inactivated influenza
virus vaccine, high IgG antibody titers to maternal vaccine
antigens were detected in cord and infant serum [12]. The
passive antibodies given by mother could delay the onset
and decrease the severity of influenza disease in young
infants [13]. Inactivated influenza vaccine is currently rec-
ommended by the US CDC (Centers for Disease Control
and Prevention in Atlanta, Georgia, USA) for all pregnant
women, especially those in the second or third trimester
during influenza seasons or those with high risk condi-
tions [14]. Besides inactivated vaccine, we have found that
immunization of mothers with plasmid DNAs encoding
influenza HA or NA gene could afford protection to the
offspring from a lethal viral infection [15].

On the other hand, the presence of maternal antibody can
inhibit the active immune response of offspring. The titer
of maternal antibody decreases gradually with the growth
of offspring, but even low titer can interfere with the active
immune response in offspring [16]. Van Maanen et al. [7]
have studied the influence of maternal antibody induced
by equine influenza vaccine on the immune effect of the
same vaccine in foals. The result showed that the maternal
antibody interfered with the vaccination of influenza vac-
cine in foals aged 24-28 weeks. Radu et al. [6] have dis-
covered that the immunization of female mice with
inactivated influenza virus WSN (A/WSN/32, HIN1) vac-
cine inhibited the immune effect of the same vaccine in
their offspring. Apart from influenza vaccine, the presence
of maternal antibody also showed influence on immuni-
zation of offspring with many other vaccines. Albrecht et
al. [17] have investigated the influence of maternal anti-
body on the vaccination of live attenuated measles vac-
cine in 34 infants aged 12 months. The seroconversion of
measles antibody was not observed in the children with
high maternal antibody titers but observed in the children
with lower maternal antibody titers, though the induced
antibody titers were significantly lower than those of chil-
dren without maternal antibody. Letson et al. [18] have
found that, when immunized with inactivated hepatitis A
virus (HAV) vaccine within one year old, the maternal
antibody-positive children had the significantly lower
HAYV antibody titer than the maternal antibody-negative
children. The passively acquired antibody has also been
proved a major interfering factor of immunization with
respiratory syncytial virus (RSV) vaccine in offspring. In
the study conducted by Murphy et al. [19], when cotton
rats were injected with the antisera against RSV, and then
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immunized with the recombinant poxvirus expressing the
F (fusion) and G (large) proteins of RSV, the injected
antisera inhibited production of the F and G antibodies
induced by recombinant poxvirus vaccine. It is thus clear
that, though maternal antibody can protect offspring
against infectious disease, it can inhibit the active
immune response in offspring. Both the protective and
inhibitory effects diminish gradually with the growth of
offspring. This diminishing period is the infection-suscep-
tible period for offspring.

In our study, we also explored the inhibition of maternal
antibody on the immunization of offspring. The influence
of maternal antibody on the immunization of offspring
was studied by determination of antibody titer and by
virus challenge test. The immunosuppression was
observed when the mothers and their offspring were
immunized with the same vaccines, either inactivated or
DNA vaccines. Few or even no offspring survived the
lethal virus challenge (see Table 1 and 2). The result indi-
cated that immunization of female mice and their natal
offspring with the same vaccine may bring strong inhibi-
tion on offspring immune response.

Ways have been looking for to deal with the interference
of maternal antibody. The first one is by vaccinating the
offspring when maternal antibody declines to a certain
extent [20], or by giving the primary immunization before
the disappearance of maternal antibody and booster after
its disappearance [21]. However, the delayed immuniza-
tion of offspring may increase the opportunity of infec-
tion. The second one is by shortening the interval between
primary and booster immunizations of offspring. For
example, as reported by Harte et al. [22], when the off-
spring were immunized with formalin-fixed malaria vac-
cine and boosted only 10 days later, the interference of
maternal antibody was overcome. Yet it is not known
whether the immune strategy is suitable for other vac-
cines. The third way is by giving high-dose vaccines for
offspring, but this may cause the increase of adverse reac-
tions or even the occurrence of death. Knudsen et al. [23]
found that the mortality rate of children in Western Africa
immunized with high dose of live attenuated measles vac-
cine was significantly higher than that of the children with
standard dose of the vaccine. The fourth way is by immu-
nizing mothers and their offspring with vaccines of differ-
ent forms. Capozzo et al. [24] reported that it was
workable to vaccinate female mice with the DNA vaccine
pTET1pp encoding tetanus toxin fragment C (Frag C), and
their offspring with the Samonella vector carrying plasmid
pTET1pp by nasal drip. The antibody titers in offspring
after booster were comparable to those of maternal anti-
body-negative neonatal mice immunized with the same
vaccine. Schlereth et al. [25] found that the immunization
of cotton rats with the recombinant vesicular stomatitis
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virus (VSV) expressing HA gene of measles virus by nasal
drip induced neutralizing antibody which could protect
the animals even in the presence of antisera induced by
live attenuated measles vaccine.

DNA vaccine has also been tested in search of ways to
overcome the interference of maternal antibody. Man-
ickan et al. [26] found that the maternal antibody induced
by primary immunization with live herpes simplex virus
(HSV) vaccine and booster with inactivated HSV vaccine
interfered with the immunization of offspring with inacti-
vated HSV vaccine, however, no interference was observed
when offspring were immunized with plasmid DNA
encoding glycoprotein B (gB). Premenko-Lanier et al. [27]
once injected infant rhesus monkeys with the antisera
induced by the infection with measles virus, then immu-
nized with mixed DNA vaccines containing the hemagglu-
tinin (HA), fusion protein (F) and nucleoprotein (NP) of
measles virus. The result showed that the immunization
with mixed DNA vaccines could overcome the interfer-
ence of maternal antibody on immune response. How-
ever, different results have also been observed in other
studies. Wang et al. [28] reported that the passive immu-
nization of offspring with antisera, separated from their
mothers immunized with inactivated rabies vaccine,
inhibited the immune response of rabies virus glycopro-
tein (gp) DNA vaccine. This might be largely due to the
low immunogenicity of rabies DNA vaccine. High immu-
nogenicity of vaccine is an important factor in overcom-
ing the interference of maternal antibody [24]. Besides
this, Pertmer et al. [29] found that the maternal antibody
induced by a sublethal influenza virus infection inhibited
the generation of antibody after immunization of off-
spring with HA DNA, but did not inhibit the generation of
antibody after immunization with NP DNA. The different
effects were thought to be as a result of different sites at
which the two kinds of DNA vaccines were expressed. The
HA protein was expressed on the cell membrane and the
NP in the cell. The maternal antibody could interfere with
the IgG antibody induced by membrane protein but could
not interfere that induced by intracellular protein.

Several mechanisms have been suggested as mediating the
inhibitory influence of maternal antibodies on infant
responses. But it essentially depends upon the maternal
antibodies-vaccine antigen ratio at the time of immuniza-
tion. The inhibition of infant responses will not occur if
maternal antibodies do not persist until completion of the
infant immunization schedule, as is the case for most cur-
rent vaccines [30]. In this paper, we have tried several
immune strategies to overcome the interference of mater-
nal antibody with immunization of offspring. When the
mothers were immunized with inactivated vaccine and
their offspring with DNA vaccine, 1.0 pg and 0.1 pg of
inactivated vaccine could inhibit the immunization of off-
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spring with 30 ug of HA DNA vaccine. The survival rates
of offspring were only 50% and 43% respectively (Table
3). The inactivated vaccine at high doses showed the inhi-
bition to the offspring immunization with HA DNA. The
result was similar to the report by Radu et al. [6]. Whereas,
the maternal antibody induced by 0.01 pg of inactivated
vaccine showed no inhibition to the offspring immuniza-
tion with HA DNA. The survival rate of offspring after a
lethal virus challenge reached 86% (6/7). On the contrary,
when both female mice and their offspring were immu-
nized with 0.01 pg of inactivated vaccine, no offspring
survived the lethal virus challenge. It showed no signifi-
cant inhibition of maternal antibody induced by low dose
inactivated vaccine to the immunization of offspring with
HA DNA.

Though the maternal immunization with inactivated vac-
cine partially inhibited the offspring immunization with
HA DNA4, it did not inhibit the offspring immunization
with NA DNA. As shown in Table 3, the anti-NA antibody
titers of offspring immunized with NA DNA were only
slightly lower than those of offspring born to the unim-
munized mothers, and the offspring were completely pro-
tected from a lethal virus challenge. The dose of
inactivated vaccine showed no influence on the immuni-
zation of NA DNA in offspring. This might be due to the
low NA protein content in inactivated vaccine, which
induced a low titer of maternal anti-NA antibody. So the
immunization of female mice with inactivated vaccine
and their offspring with NA DNA was a good immune
strategy to overcome the interference of maternal anti-
body.

Another immune strategy, i.e. the immunization of
mother and the offspring with DNA vaccines encoding
different antigens also showed a satisfactory result in our
study. As shown in Table 4, the offspring immunized as
schemed were completely protected. The anti-HA anti-
body titers of HA DNA-immunized offspring, born to the
mothers immunized with NA DNA, were comparable to
those of HA DNA-immunized offspring born to unimmu-
nized mothers. Moreover, the protective rate of the former
was significantly higher than that of the latter, which
might be due to the enhancement of protective effect by
maternal anti-NA antibody. Similarly, the anti-NA anti-
body titers in NA DNA-immunized offspring, born to the
mothers immunized with HA DNA, were comparable to
that of NA DNA-immunized offspring born to unimmu-
nized mothers.

In this study the NA antibody titers were determined by
fluorescent-based NI assay with the substrate 2'-(4-meth-
ylumbeliferyl)-a-D-N-acetylneuraminic acid (4-MU). We
notice there is a report showing that the assay may be
unreliable and lack standardization compared with the
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fetuin-based assay [31]. However, we don't think it make
a big difference to draw valid conclusions in this study.
Although the derived antibody titer may not be accurate
because of the limitation of the NI assay, it would not
influence the general changing tendency of all the anti-
body titers and thus would not influence the conclusions.
Moreover, our conclusions are based on other factors,
which we think are more important, such as survival rate
and residual lung virus titer of mice, etc. The NA antibody
titer determined by fluorescent-based NI assay would be
further confirmed by fetuin-based assay in our future
studies.

Conclusion

In this study, we designed the above experiments to
explore the influence of maternal antibody on offspring
and tried to find ways to overcome its inhibition effect. All
the experiments were performed twice. From the results,
we may conclude that, in order to avoid the interference
of maternal antibody with the vaccination of offspring,
the immune strategy for mothers and their offspring shall
be adjusted as follows: 1) If mothers are immunized with
inactivated influenza vaccine, the offspring shall be
immunized with NA DNA vaccine, and the immunization
with inactivated vaccine shall be avoided in offspring; 2)
If mothers are immunized with influenza virus HA (NA)
DNA, the offspring shall be immunized with NA (HA)
DNA, and the immunization with the same DNA vaccine
as that for mothers shall be avoided as far as possible.

Methods

Plasmid DNAs

Plasmids pCAGGSP7/NA and pCAGGSP7/HA were con-
structed by cloning the PCR products of NA and HA genes
from the influenza virus strain A/PR/8/34 (PR8, H1N1)
into expression vector pCAGGSP7, respectively, as
described previously [32]. Plasmid pCAGGSP7 was con-
structed by inserting a polylinker (oligonucleotides) con-
taining Kpnl, Xhol, Clal, EcoRV, Smal, Notl and Sacl sites
into the EcoRI site of pCAGGS which was constructed by
Niwa et al. [33]. The nucleotide sequences of NA and HA
DNAs were confirmed by the dideoxy method using ABI
PRISM 377 DNA Sequencer (Applied Biosystems). The
expressions of the encoded proteins, NA and HA, were
also confirmed in 293T human embryonic kidney cells, as
described previously [32]. Plasmids were propagated in
Escherichia coli XL1-blue bacteria and purified using QIA-
GEN purification kits (QIAGEN-tip 500, Qiagen, Chats-
worth, CA).

Immunization

The female BALB/c mice in test groups were immunized
twice, at an interval of 3 weeks, with the vaccine at various
dosages respectively. One week after the second immuni-
zation, the female mice were bred with unimmunized

Page 8 of 11

(page number not for citation purposes)



BMC Infectious Diseases 2007, 7:118

male BALB/c mice aged 10-12 weeks in the same cage.
About 15 days later, most of the females became pregnant
and were then separated from the males. The offspring
were grouped, 11-12 for each, and used for the subse-
quent test. Offspring of unimmunized mothers were pro-
duced by the same procedure.

The inactivated split-product influenza virus A/PR/8/34
(PR8, H1NT1) vaccine was diluted to a volume of 200 pl
with phosphate buffer saline (PBS). Adult female mice
(aged 6-8 weeks) or neonatal mice (aged 1 week) were
immunized i.p. with 1.0, 0.1 and 0.01 pg of inactivated
influenza vaccine separately. Three weeks later, the mice
were boosted with the vaccine at same dose as primed.
Inactivated split-product influenza virus (PR8, HIN1)
vaccine was prepared by Shanghai Institute of Biological
Products (SIBP) and detected for concentration using BCA
kit (Pierce).

In vivo electroporation was carried out according to the
method described by Aihara and Miyazaki [34]. Adult
female BALB/c mice (aged 6 to 8 weeks) and neonatal
mice (aged 1 week) were immunized twice with plasmid
DNA dissolved in 30 and 15 pul of Tris-EDTA buffer,
respectively. After injection in the right quadriceps mus-
cle, a pair of electrode needles with 5 mm apart was
inserted into the muscle to cover the DNA injection sites
and electric pulses were delivered using an electric pulse
generator (Electro Square Porator T830 M; BTX, San
Diego, CA). Three pulses of 100 V each, followed by three
pulses of the opposite polarity, were delivered to each
injection site at a rate of one pulse per second. Each pulse
lasted for 50 ms.

Infection

One week after the second immunization, the offspring
were anesthetized and challenged with 20 pl of viral sus-
pension of mouse-adapted strain A/PR/8/34 (PR8, HIN1)
[20 x 50% lethal dose (LDs,)] by intranasal route. This
infection caused rapid and widespread viral replication in
the lungs and deaths of the unimmunized mice within 7
days [35].

Specimens

At least three mice in each group were anaesthetized with
chloroform and then bled from the heart with a syringe.
After bleeding, the mice were incised ventrally along the
median line from the xiphoid process to the point of the
chin. The trachea and lungs were taken out and washed
three times by injecting with a total of 2 ml of PBS con-
taining 0.1% BSA. The bronchoalveolar wash was used for
virus titration after removing cellular debris by centrifuga-
tion [36].
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Ab assays

The sera were collected by tail vein bleeding and used for
IgG Abs assays. The titer of IgG Ab produced against HA
molecules purified from PR8 virus was measured by
enzyme-linked immunosorbent assay (ELISA). ELISA was
performed using a 96-well microtiter plate (EIA plate,
Costar, Cambridge, MA, USA) with the reagents consisting
of first, HA molecules purified from the PR8 virus accord-
ing to the procedure described by Phelan et al [37]; sec-
ond, 2-fold serial dilutions of sera from each group of
immunized or unimmunized mice; third, goat anti-
mouse IgG Ab (y-chain specific) (Southern Biotechnology
Associates, Inc. USA) conjugated with biotin; fourth,
streptavidine conjugated with alkaline phosphatase
(Southern Biotechnology Associates, Inc. USA); and
finally, p-nitrophenyl-phosphate. The amount of chro-
mogen produced was measured based on absorbance at
414 nm and 405 nm in a Labsystems Multiskan Ascent
Autoreader (model 354, Finland).

The inhibition assay of NA activity by Ab (NI assay) was
performed with the substrate 2'-(4-methylumbeliferyl)-a-
D-N-acetylneuraminic acid (4-MU). PR8 viruses (107
EID;, per ml), grown in the allantoic sac of 10-day-old
chicken embryos and stored as allantoic fluid suspensions
at -80°C, were employed as enzyme source. NI assay was
carried out by preincubating the enzymes (25 pl) with var-
ious dilutions of antiserum (25 pl) at room temperature
for 30 min before the enzyme assay. The enzyme mixtures
were then incubated with the substrate solution (50 pl)
containing 400 mmol/L sodium acetate (pH 6.5), 4
mmol/L calcium chloride and 2% butanol in the presence
of 1 mmol/L 4-MU. After incubation at 37°C for 10-30
min, the reaction was stopped by adding a mixture (100
pl) containing 665 mmol/L glycine, 415 mmol/L sodium
hydrogen carbonate and 300 mmol/L sodium chloride
(pH 10.7). Levels of free 4-MU were measured by reading
the fluorescence intensity on a microtiter plate fluores-
cence reader (Genios, Tecan) at 365 nm. Antibody-posi-
tive cut-off values were set as the mean-2 x S.D. of the
fluorescence intensity of mice in control group. NI titers
are expressed as the highest serum dilution that resulted in
inhibition of the NA activity [38-40].

Virus titrations

The bronchoalveolar wash was diluted 10-fold serially
starting from a dilution of 1:10, inoculated to Madin-
Darby canine kidney (MDCK) cells, incubated at 37°C
and examined for cytopathic effect 3 days later. The virus
titer of each specimen, expressed as the fifty percent tissue
culture infection dose (TCIDs,), was calculated by Reed-
Muench method [41]. The virus titer in each experimental
group is represented by the mean + S.D. of the virus titers
per ml of specimens from at least 3 mice in each group.
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Statistics

The results of experimental groups were evaluated by Stu-
dent's t-test; if P value is less than 0.05, the difference was
considered as significant. For survival, the probability was
calculated by using Fisher's exact test, comparing the sur-
vival rate of mice immunized with vaccine to that of the
mice in control groups. The survival patterns of the con-
trol and the immunized mice were graphed using the Kap-
lan-Maier survival curves. The Log Rank test was used to
analyze the survival rate data. Differences were considered
significant at p < 0.05.
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