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Abstract

Background: Influenza vaccines contain Influenza A and B antigens and are adjusted annually to match the
characteristics of circulating viruses. In Germany, Influenza B viruses belonged to the B/Yamagata lineage, but since
2001, the antigenically distinct B/Victoria lineage has been co-circulating. Trivalent influenza vaccines (TIV) contain
antigens of the two A subtypes A(H3N2) and A(HTN1), yet of only one B lineage, resulting in frequent vaccine
mismatches. Since 2012, the WHO has been recommending vaccine strains from both B lineages, paving the way
for quadrivalent influenza vaccines (QIV).

Methods: Using an individual-based simulation tool, we simulate the concomitant transmission of four influenza
strains, and compare the effects of TIV and QIV on the infection incidence. Individuals are connected in a dynamically
evolving age-dependent contact network based on the POLYMOD matrix; their age-distribution reproduces German
demographic data and predictions. The model considers maternal protection, boosting of existing immunity, loss
of immunity, and cross-immunizing events between the B lineages. Calibration to the observed annual infection
incidence of 10.6% among young adults yielded a basic reproduction number of 1.575. Vaccinations are performed
annually in October and November, whereby coverage depends on the vaccinees’ age, their risk status and
previous vaccination status. New drift variants are introduced at random time points, leading to a sudden loss of
protective immunity for part of the population and occasionally to reduced vaccine efficacy. Simulations run for
50 years, the first 30 of which are used for initialization. During the final 20 years, individuals receive TIV or QIV,
using a mirrored simulation approach.

Results: Using QIV, the mean annual infection incidence can be reduced from 8,943,000 to 8,548,000, i.e. by
395,000 infections, preventing 11.2% of all Influenza B infections which still occur with TIV (95% Cl: 10.7-11.8%).
Using a lower B lineage cross protection than the baseline 60%, the number of Influenza B infections increases
and the number additionally prevented by QIV can be 5.5 times as high.

Conclusions: Vaccination with TIV substantially reduces the Influenza incidence compared to no vaccination.
Depending on the assumed degree of B lineage cross protection, QIV further reduces Influenza B incidence by
11-33%.
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Background
Before 1985, circulating Influenza B viruses were closely
related to the precursor of the subsequent B/Yamagata
(B/Yam) lineage [1]. Since 2001, viruses of the distinct
B/Victoria (B/Vic) lineage have been detected in clinical
samples from various parts of the world. The two Influ-
enza B lineages are antigenically distinct [1-3]; genome
sequence analysis revealed that they substantially differ
as to the gene encoding the surface hemagglutinin [1,2]
and that they continue to diverge [4,5]. Viruses of both
B lineages now co-circulate together with the Influenza
A viruses A(H3N2) and A(HIN1) [6]. The incidence of
Influenza B infection varies substantially from year to
year [6]. Surveillance data of the seasons from 2001/02
to 2010/11 show that Influenza B is responsible for 1 to
60% (mean 23%) of influenza cases in Europe and for <1
to 44% (mean 24%) in the United States, respectively
[6]. Influenza B infections cause severe disease in all age
groups [7] and their clinical symptoms and outcomes
are similar to those of Influenza A infections [8].
Influenza vaccine design is intended to anticipate which
variants will circulate in the subsequent transmission
season. The antigenic composition of the vaccine is re-
vised twice a year by the World Health Organization
(WHO) and adjusted to the antigenic characteristics of
circulating influenza viruses in the Northern and Southern
hemisphere. Current trivalent influenza vaccines (TIV)
contain antigens of A(H3N2) and A(H1N1), but of only
one Influenza B lineage [9]. The efficacy of these influ-
enza vaccines varies with the age of the vaccinees and
with the degree at which the vaccines match the circu-
lating influenza strains. In case of a good match, their
efficacy can range from 70% to 90% in young adults, but
it is lower in very young children and in elderly [9]. A
recent meta-analysis of randomized controlled vaccine
efficacy trials showed that TIV confers a 52% protection
(95% confidence interval (CI): 19 to 72%) against the
B-lineage not contained in the vaccine, compared to
77% (95% CI: 18 to 94%) for the lineage which matches
the vaccine [10]. Co-circulation, fluctuating prevalence,
and differing geographical distributions of the two B line-
ages have challenged global recommendations for vaccine
composition [3]. In the US, the Influenza B lineage in TIV
failed to match the predominant circulating B lineage in
five out of ten seasons between 2001 and 2011 [11]. In
2012, WHO recommended for the first time vaccine
strains from both B lineages, paving the way for the devel-
opment of quadrivalent influenza vaccines (QIV) which
contain strains of two B lineages and two A subtypes [12].
A variety of deterministic and stochastic models have
been proposed to address various aspects of seasonal
[13-16] or pandemic influenza [17-21] or to predict the
size and timing of seasonal waves [22-24]. We have de-
cided to use an individual-based stochastic model which
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allows for maximum flexibility in modeling immunity
and vaccination strategies [25] and, thus, circumvents
common oversimplifications of deterministic models
[26]. We have developed the simulation tool 4Flu to com-
pare the effect of trivalent and quadrivalent vaccination on
the incidence of influenza infection in Germany. 4Flu is
based on an individual-based stochastic model, which al-
lows for the independent and simultaneous transmission
of the four influenza variants A(H1N1), A(H3N2), B/Vic
and B/Yam. We use the official German age-distribution
for simulation years which lie in the past, and official
demographic predictions for the future [27]. Individuals
are connected by a dynamically changing contact network
which is synchronized with the German POLYMOD con-
tact matrix [28]. The simulation model further allows for
the introduction of new drift variants and for mismatched
vaccine design against new drift variants. Special care has
been taken to provide a realistic immunity model which
allows for maternal protection of newborns, for booster
effects and waning of existing immunity and for cross-
immunizing effects of infections and vaccinations. Vac-
cination either uses TIV or QIV. Each simulation runs
for several decades and reports the annual incidence of
influenza infections. Simulations are typically repeated
one thousand times to average out random effects.

Methods

We present an individual-based stochastic simulation
model for the simultaneous and independent transmission
of four influenza strains (A(H1N1), A(H3N2), B/Vic,
B/Yam). Each simulation runs for 50 years, with each
simulation year starting on July 1st: the first 10 years
are used to initialize the contact network, the next 20 years
for initializing age-dependent infection and immunity
patterns in the population, and the final 20 years for
comparing vaccines.

Demography

As demographic changes of the population have been
shown to have a major impact on the result of transmis-
sion models for seasonal influenza [13], we have made
sure that the simulated demography is at all times iden-
tical to the population structure of Germany. Our simu-
lated population corresponds to one thousandth of the
German population (about 80,000 individuals). Every in-
dividual has an age and a risk status. For the years from
1993 to 2011, we use the observed age distribution of
Germany, for later years, we use the official prediction
“variant 1, W2” of Deutsches Statistisches Bundesamt
[27]. Births and deaths occur throughout the year and
are implemented such that the simulated population
exactly matches the official demographic distribution at
the end of each simulation year. If the size of a cohort
increases from one year to the next, new individuals
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immigrate (see Appendix 1 for details). Depending on
the age of the individuals, they are given a risk status
which is used to determine the vaccination coverage
and which can also be used to determine the risk of
complications upon infection. As individuals age and the
demography keeps changing, the individuals’ risk status is
updated during the simulation to keep the specified risk
fractions in the different age classes constant.

Contact network

For the transmission of the influenza infections, we
have constructed a dynamic network which connects
the individuals, using the German POLYMOD matrix as
summary statistic for these connections. This contact
matrix is based on an EU sponsored study in which
individuals were asked to supply a contact diary for one
day. Contacts were then summarized in 5-year age classes
[28]. To use this matrix for a population with changing
demography, we connect each individual with randomly
picked other individuals such that the expected number
of these “outgoing” connections is proportionate to the
values of the POLYMOD matrix (which depend on the
ages of the individuals and their contacts). On average,
each individual has a sum of 10 “outgoing” and “incom-
ing” contacts. When individuals age, their contacts grad-
ually change such that the population statistics of the age-
dependent contact distribution remain in agreement with
the POLYMOD matrix at any time (see Appendix 2 for
details). In order to initialize the contact structure, we
start with the German demography of 1993 and chose
random contacts of individuals within 5-year age clas-
ses. We then run the simulation for 10 years without
infection while keeping the age distribution constant,
but allowing for births, deaths and immigrations as
needed.

Initialization of immunity, infection and vaccination

After the initialization of the contact network, a random
fraction of 30% of the population is set to be immune
against the Influenza A subtypes and a random fraction
of 40% is set to be immune against the Influenza B line-
ages. To transform this crude initial immunity into a
realistic age-dependent immunity pattern, transmission
of influenza is simulated for 20 years before vaccination
strategies are compared. As B/Vic did not circulate in
Germany for at least 10 years before it re-appeared in
the 2001/02 season [29], no B/Vic infections are used in
the simulations before the 2001/02 simulation year.
During the initialization phase from 1993 to 2012, indi-
viduals are vaccinated with TIV, using the B lineage in
the vaccine which was actually used in Germany in the
given year. In the 20-year evaluation period which starts
with the simulation year 2013/14, individuals are either
vaccinated with TIV or with QIV. As exactly the same

Page 3 of 21

individuals are given either one of the two vaccines on
the same vaccination days, pair-wise comparisons can be
made between the TIV and the QIV scenario. A 50/50
random decision is made for each future simulation
year to determine which B lineage will be used in TIV.

Natural history and transmission

For the transmission of the infection, it is not important
whether a contact is labeled as “incoming” and “outgoing”;
any connection of two individuals allows transmitting the
infection either way. In order to calculate the probability
of infecting a contact, the largest eigenvalue of the next
generation matrix is calculated after initialization of the
contact network. The transmission probability per contact
is then given by dividing the basic reproduction number
Ry (chosen to be 1.575 for the baseline parameter setting)
by the largest eigenvalue [30] (see Appendix 3 for details).
The transmission probability is further assumed to be
subject to seasonal fluctuation; its maximum around
Christmas is 43% higher than the baseline, its minimum
occurs on 21 June of each year [31]. Throughout the
year, individuals are constantly exposed to a very low
rate of infection “from the outside” of the population,
irrespective of their age. Infected individuals first pass
through a latent period of 2 days and then become in-
fectious for 4 days (individuals below 18 years of age) or
2 days (older individuals), respectively [32]. Transmission
of the infection occurs at a random time point during
the infectious period.

Naturally acquired immunity

After infection, individuals acquire a temporary immunity
which prevents further infections; this immunity is lost
continuously at a constant rate. After losing immunity,
individuals become fully susceptible again. If an immune
individual gets in contact with an infectious one, or if an
immune individual is vaccinated, the duration of his or
her immunity can be extended by a booster vaccination or
infection (see details in Appendix 4) without rendering the
individual infectious. As simulation models have shown
that cross-immunizing events caused by co-circulating
B lineages can play an important role in the transmission
dynamics of seasonal influenza [14,26], we have also
incorporated this feature in 4Flu: infection with any one
of the two B lineages has a 60% probability to lead to a
cross-immunizing event against the other B lineage [10].
We do not consider specific cross-protection between the
two Influenza A strains or among Influenza A and B, but
examine the possible effect of a short-term unspecific pro-
tection in a sensitivity analysis. Newborn individuals are
protected by maternal antibodies against the influenza
strains against which their mother is immune (irrespective
of whether her immunity was acquired by infection or
vaccination). This maternal protection lasts for 2 to
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4 months [33,34] and is assumed to prevent infection.
The dynamics of acquiring and losing immunity is
schematically depicted in Figure 1.

Drift variants

After an average circulation time of 3.5 years (A(H3N2))
[35,36] or 7 years (all other influenza viruses), a circulat-
ing variant is replaced by a new drift variant in the simu-
lation. For the sake of simplicity, we assume that all
variants of a given influenza subtype or lineage which
are introduced into the population in a simulation year
belong to the same drift variant, i.e. switching to a new
drift variant always occurs at the beginning of the simula-
tion year (on July 1st). We further assume that a variant
will not be introduced again after it has been replaced by a
new drift variant. A percentage of 60% randomly chosen
individuals who are immune against the old variant are
also immune against the new one, whereas the remaining
40% are assumed to be susceptible against the new drift
variant (see Appendix 6 for details) [36].

Vaccination

Vaccinations are performed in October and November
of each simulation year [37], whereby a percentage of
individuals is vaccinated, using either TIV or QIV. As
shown in Table 1, the vaccinated percentage depends on
the age of the individuals, on their risk status and on
their vaccination status [38]: individuals who were vacci-
nated in the previous simulation year have twice the
chance of being vaccinated again, compared to previously
unvaccinated individuals (see Appendix 5 for details). An
age-dependent percentage of previously susceptible vacci-
nees become immune after vaccination (vaccine efficacy)
[39-41]. In case of TIV vaccination, we also consider
the possibility of cross-immunizing effects against the
B lineage which is not included in the vaccine: the age-
dependent vaccine efficacy is multiplied with 0.6 to
determine what percentage of vaccinees is protected
against the B lineage which is missing in the vaccine.
Successful vaccination can also extend the duration of pre-
existing immunity (“booster-vaccination”; see Appendix 5
for details). When a new drift variant has just been
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introduced, the vaccine may not match this variant
(vaccine mismatch). In this case, the age-dependent
vaccine efficacy is multiplied by 0.6 (calculated from
[39]). The decision of whether the vaccine is matched
or mismatched to a new drift variant [42] is made identi-
cally for the TIV and the QIV scenario. Vaccine efficacy
depends on the age of the vaccinee, but is assumed to be
independent on the virus subtype or lineage. We use the
same vaccine efficacy for TIV and for QIV (Table 1)
[39-41], but distinguish between age classes and individual
risk status [43]. For convenience, we use the same age-
dependent values of the vaccination coverage in every
simulation year. In the first simulation year, a total of
26.8% of the population is vaccinated. Due to demo-
graphic changes (Figure 2) and due to a high vaccin-
ation coverage in the elderly (Table 1), the overall
vaccination coverage reaches 29.4% at the beginning of
the evaluation period and continues increasing until the
end of the simulation when it reaches 33.4%. Vaccination-
derived immunity is lost much more quickly than natur-
ally acquired immunity [44].

Comparison of TIV and QIV

During the initialization period, only TIV is used as vac-
cine. During the evaluation period, each single simulation
is run as a “TIV” and as a “QIV scenario”: (1) In order to
keep the two scenarios closely matched, they use exactly
the same contact network and demographic composition
of the population. (2) Exactly the same individuals are
vaccinated in each scenario, using either TIV or QIV at
exactly the same time points. (3) If a drift event or a
vaccine mismatch occurs, it occurs in the same simulation
year in both scenarios. As a consequence, individuals can
only differ in their epidemiologic and immunologic state
with respect to the B lineages in the two scenarios. We
calculate the cumulative numbers of infections for the
20 year evaluation period, using TIV or QIV and finally
report the annual number of infections prevented by
QIV (difference “TIV-QIV” divided by 20). As simulations
are strongly influenced by random numbers, at least
1,000 simulations are run for each parameter setting

—| maternally | _, susceptible |[—>

latent e g
infection

protected

Figure 1 Transmission and immunity dynamics in the simulations: black arrows indicate births and disease progression, red solid
arrows indicate infections, green arrows indicate successful vaccinations, and grey arrows show loss of immunity; dotted red arrows
indicate cross-immunization against a B lineage caused by an infection or vaccination with the other B lineage; vaccinations and infections
can also booster existing immunity (indicated by a “+”); arrows for deaths (which drain each single compartment) were omitted.
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Table 1 List of parameters and baseline values
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Parameter Baseline Reference
Basic reproduction number Ry 1.575 Calibration
Maximum seasonal transmission factor 143 [31]
Day of maximum seasonal transmission Dec. 21st [31]
Duration of the latent period 2 days [32]
External infection probability 0.0003/year Assumed
Duration of the infectious period [32]

- children (age 0-17 years) 4 days

- adults (age 18 years and above) 2 days

Duration of maternal protection 2 - 4 months [33,34]

Immunity loss rate after infection (irrespective of influenza subtype or lineage)
Average circulation time per drift variant

- A(HTN1), B/Vic, B/Yam

- A(H3N2)

Vaccination coverage

- no risk group, 0.5-2 years of age

- no risk group, 3-6 years of age

- no risk group, 7-10 years of age

- no risk group, 11-15 years of age

- no risk group, 16-59 years of age

- no risk group, 60 years of age or older

- risk group, 0.5-59 years of age

- risk group, 60 years of age or older

Revaccination preference factor

Probability of mismatched vaccine design when a new drift variant occurs
Vaccine efficacy (well-matched vaccine; irrespective of influenza subtype or lineage)
- 0-1 year of age

- 2-5 years of age

- 6-15 years of age

- 16-64 years of age

- 65 years of age or older

Cross protection after infection

- percentage of individuals who are immunized against a B lineage when they are infected
(or booster-infected) with the other B lineage (lineage cross protection)

- percentage of individuals who were immune against the previous drift variant, who are still protected
against the new one (drift cross protection)

Cross protection after vaccination

- vaccine efficacy multiplication factor for B lineage not contained in TIV (lineage cross protection)
- vaccine efficacy multiplication factor for vaccinations with drift mismatch (drift cross protection)
Immunity loss rate after vaccination

Percentage of the population with elevated risk

- newborn individuals

-age 0 to 15 years

- age 16 to 59 years

- age 60 years and above

1/(9.13 years) Calculated from [31]

Calculated from [35] and [3]

7.0 years
3.5 years
[38]
19.2%
22.4%
23.6%
11.0%
16.9%
48.8%
33.0%
64.9%
2 Assumed
40% Calculated from [3,35,42]
45% [40]
39% [40]
69% [40]
73% [39]
58% [41]
Calculated from [39]
60%
60%
Calculated from [39]
0.6
06
1/(1.8 years) Calculated from [44]
[43]
3.0%
6.0%
14.2%
47.1%
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(See figure on previous page.)

Figure 2 Visualization of the contact structure in the simulated population; the number of contacts decreases from red over yellow,
green, light blue to dark blue. (a) POLYMOD contact structure before initialization of the contact network. (b) Contact network after a 10-year
initialisation period during which the contact network is allowed to evolve while keeping the demographic structure of Germany from 1993
constant. (c) to (f) contact structure in later years. The grey bar charts on the right hand sides of the contact visualizations show the demographic

distribution of Germany of the given years.

and arithmetic means of the prevented number of infec-
tions are calculated.

Model calibration

After an initial screening process, 1,000 to 2,000 simula-
tion runs are performed for each proposed value of the
basic reproduction number, starting with values from 1.5
up to 1.6, using a step size of 0.025. For each simulation,
it is recorded, what percentage of individuals in the age
class from 16 to 60 years experiences an influenza infec-
tion in the 2006/07 transmission period. These results
are compared to the observation of Williams et al. [45].
As 2006/07 was labeled as a “normal” influenza season
by the Arbeitsgemeinschaft Influenza [42], we used the
median of the simulated infections for model calibration.

Sensitivity analyses

The basic reproduction number R, has been shown to
be one of the most influential parameters which determine
the outcome of influenza models [13]. Different ranges
for Ry have been proposed in the literature (0.9-2.1 [46],
1.2-1.3 [47], 1.2-14 [48], 1.2-2.3 [49], 1.3-1.7 [50], 1.3-1.9
[51], 1.4-1.6 [52], 1.6-3.0 [53]). Differences in these ranges
may derive from the differing epidemiologic circumstances
of the places and seasons in which the estimates were
derived, yet they may also be due to different ways of
estimating R, [30,54,55]. As it has been stressed to ad-
dress uncertainties in the value of R, [56], we perform a
sensitivity analysis in which we screen the parameter
range from 1.2 to 2.0, using 1,000 simulations for each
value. Further sensitivity analyses address the influence
of the duration of naturally acquired immunity and of
the degree of B lineage cross protection.

Results

Figure 2 shows how the contact matrix changes over
time: Figure 2a shows the state of the contact network
before initialization: the 5-year age classes of the German
POLYMOD matrix are slightly disturbed by the German
demography, but are still clearly visible. After about five
years of initialization, the contact structure has changed to
mostly allocate contacts to individuals of the same age, al-
though (by construction of the algorithm) the summary
statistics of the number of “outgoing” contacts per 5-year
age group remain identical to the POLYMOD matrix.
After ten years of network initialization, the contact net-
work has converged to a steady state (Figure 2b). After

that time, the immunologic and epidemiologic initiali-
zations are started and the demography of the simulated
population is allowed to change according to the official
German demography. The resulting age distributions of
the German population are shown on the right hand
sides of the contact matrix visualizations in Figure 2b-f.

As the number of children keeps declining and the
number of elderly grows in the German population, the
frequency of contacts becomes less focused on children
and young adults and tends to be more spread out over
the ages. In 2012, contacts are most frequent in juveniles
and then decline over age (Figure 3b). Taking into consid-
eration the longer duration of infectiousness of children
and juveniles and considering the susceptibility status of
their contacts, we can calculate how many individuals are
infected on average by a single infectious individual of a
given age as shown in Figure 3c. The median time until an
infected individual passes on the infection (generation
period) is 3.3 days in our simulations.

Our model is calibrated to observed data from Germany.
As our simulation results vary strongly (coefficient of
variation CV = 91.5% for R, = 1.575), we use the median
of the simulated incidence when evaluating simulation
results: for each value of the basic reproduction number
R, between 1.5 and 1.6 (step size 0.025), we ran 1,000 to
2,000 simulations and calculated the median of the in-
fection incidence in the 2006/07 transmission season
for young adults. A basic reproduction number of R, =
1.575 yields a median infection incidence of nearly
exactly 10.6% as was observed among German health
care workers and controls in that season [45]. Figure 4a
shows the large fluctuation of annual influenza waves in
a single simulation in which TIV is used throughout,
whereby all infections with the two A strains and the
two B lineages are added up. Figure 4b selectively shows
the incidence with B/Yam for the same simulation.
Years in which B/Yam is not contained in TIV are shown
as dark grey bars. New B/Yam drift variants are introduced
in 2015, 2022, 2028 and 2031, shown as vertical dashed
lines. In 2028, the B/Yam lineage in the vaccine does not
match the newly introduced drift variant, indicated by a
light grey background. During two seasons, large B/Yam
outbreaks occur, dwarfing the smaller waves in the other
seasons. Starting with the year 2013, simulations branch
into a TIV scenario and a QIV scenario (Figure 4c). The
cumulative numbers of infections are calculated in each of
these scenarios and are used to calculate the average
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annual number of infections prevented by QIV as com-
pared to TIV.

Averaged annual simulation results for the baseline
set of parameter values are given in Table 2. As the
simulated population is exactly one thousandth of the
German population, these results have to be multiplied
with 1,000 to obtain estimates for the whole of Germany.
The annual number of influenza infections in Germany
can be reduced from 8,943,000 to 8,548,000, ie. by
395,000 infections per year without increasing the vac-
cination coverage if QIV is used instead of TIV. The
prevented infections constitute 4.3% (95% confidence
interval (CI): 4.1-4.5%) of all influenza infections which
still occur under TIV vaccination. The simulated frac-
tion of Influenza B infections among all infections varies
widely from one season to the next; even if averaged
over the 20 years of each simulation, the 95% reference
interval for the percentage of Influenza B infections
among all influenza infections ranges from 24.6 to 51.3%
(median 37.3%) in the TIV scenario, and from 21.3 to
49.1% (median 34.3%) in the QIV scenario. Switching from

TIV to QIV prevents on average 11.2% (CI: 10.7-11.8%) of
all Influenza B infections which still occur under TIV vac-
cination. In 53% of 10,000 simulation years, the B lineage
not contained in TIV caused more infections than the B
lineage which was contained in TIV.Additionally to low-
ering the expected number of infections, QIV further-
more reduces the number of seasons with rather
extreme Influenza B outbreaks (Figure 5).

The risk that in Germany more than 10 million Influenza
B infections occur in a single transmission season is about
13.4% for the TIV scenario and 11.2% for the QIV scenario
(Figure 5a), meaning that the expected duration between
such extreme events can be increased from 7.5 years (TIV)
to 8.9 years (QIV). For 15 million infections per year, the
difference is even more pronounced (21.3 years for TIV,
29.2 years for QIV). The risk of strong Influenza B seasons
can be reduced by up to 27% if QIV is used (Figure 5b).

We address parameter uncertainty in various sensitivity
analyses: the basic reproduction number, Ry, is varied
from 1.2 to 2.0 (baseline value: 1.575) while the values
of the other parameters are kept at their baseline values.
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Table 2 Average annual results (with 95% confidence intervals) obtained for the 20 year evaluation period (calculated
from 2,000 simulations using the baseline parameter values) in a simulated population of about 80,000 individuals

Age group Annual mean number of Annual mean number of Annual mean number of Percentage prevented
infections using TIV infections using QIV prevented infections

0-15 2152 2073 79 3.6
(2140-2164) (2061-2085) (75-83) (34-39)

16-60 5470 5247 223 4.0
(5433-5506) (5211-5282) (212-235) (3.8-4.2)

61+ 1321 1228 93 69
(1311-1331) (1219-1237) (90-97) (6.7-7.2)

all 8943 8548 395 43
(8885-9001) (8491-8604) (376-414) (4.1-4.5)

As R, summarizes the contagiousness of the disease, the
average annual number of infections in Germany grows
with increasing R, from 3,354,000 to 12,973,000 per year
in the TIV scenario, and from 3,029,000 to 12,587,000 in
the QIV scenario (Figure 6a-c and Appendix 8); the aver-
age number of infections annually prevented by QIV rises
from 325,000 infections for R,=1.2, to about 386,000
infections for R,=1.5, and, thereafter, remains about
constant on a level of 395,000 infections. Due to the ris-
ing denominator, the percentage of prevented infections
falls with increasing R, from 9.5 to 3.0% (all infections),
or from 21.6 to 7.8% (Influenza B infections).

In a further sensitivity analysis, the rate at which im-
munity is lost is varied such that the duration of natur-
ally acquired immunity lasts on average 4 to 12 years
against A(HIN1) and the B lineages, and for 3.2 to
7.1 years against A(H3N2) (see Appendix 4 for details).
The average annual number of infections drops with in-
creasing immunity duration from 11,267,000 to 6,735,000
infections per year in the TIV scenario, and from
10,751,000 to 6,453,000 in the QIV scenario (Figure 7a-c
and Appendix 8). The average number of infections an-
nually prevented by QIV correspondingly drops from

517,000 (4.6% of all infections, or 11.7% of influenza B
infections) to 282,000 infections (4.1% of all infections,
or 10.7% of influenza B infections).

Following the parameter choice of Vynnycky et al
[31], we perform a sensitivity analysis in which we only
increase the duration of naturally acquired Influenza B
immunity from the baseline value of 6 years to 12 years
while keeping the immunity duration of Influenza A at
the baseline value. This reduces the annual number of
infections from baseline 8,943,000 to 8,098,000 in the
TIV scenario, and from baseline 8,548,000 to 7,814,000
in the QIV scenario. The average number of infections
annually prevented by QIV correspondingly drops from
baseline 395,000 (4.3% of all infections, or 11.2% of all
Influenza B infections) to 284,000 infections (3.5% of all
infections, or 10.8% of all Influenza B infections). Increas-
ing the duration of Influenza B immunity shifts the 95%
reference intervals of the percentage of Influenza B infec-
tions among all influenza infections towards lower values,
reaching 16.3-46.6% (median 30.5%) for the TIV scenario,
and 13.7-43.3% (median 27.5%) for the QIV scenario.

Another highly influential parameter is the degree of
B lineage cross protection: in a sensitivity analysis, we
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increase the percentage of individuals who are immu-
nized against an Influenza B lineage when they are suc-
cessfully vaccinated or infected with the other B lineage,
using values from 0% up to the baseline value of 60%
(Appendix 8). The higher the probability of B lineage
cross protection is, the fewer Influenza B infections
occur (Figure 8a-c). Whereas for the baseline value, the
median percentage of Influenza B infections among all
infections is 37.3% (TIV scenario), it increases to 54.1%
if no B lineage cross protection is considered. Accord-
ingly, the number of infections which can annually be
prevented by QIV increases from 395,000 (baseline
value) up to 2,180,000 infections if lower values are con-
sidered. If the degree of B lineage cross protection de-
creases over time from initially 60% to a lower value
which is reached at the end of the simulation, the add-
itional benefit of using QIV increases from the baseline
result of 395,000 infections per year (obtained for a con-
stant level of 60% B lineage cross protection) to 559,000
(decreasing the cross protection from 60% to 50%), to
706,000 (40%) and to 853,000 (30%), respectively (aver-
age values of 1,000 simulations for each parameter set).
Our model does not explicitly consider cross immunity
between the A strains or among Influenza A and B, but

we have run a sensitivity analysis where we consider a
short-term unspecific immunity which prevents infection
with any influenza virus within the first weeks following
an infection. As shown in Appendix 8, such an indirect
protection, which may last for one to four weeks, has only
a marginal effect on the results. If anything, it may slightly
increase the difference between the QIV and the TIV
scenario.

In order to keep the age distribution of “outgoing con-
tacts” synchronized to the POLYMOD contact matrix
despite demographic changes, contacts have to be re-
moved or added daily. Although we keep the number of
changes to a minimum, only 0.36% of the childhood
contacts of 10 year old children at the beginning of the
simulation are still among their contacts at the end of
the simulation when they are 50 years old. We have ex-
amined the influence of contact turnover on our results
in a sensitivity analysis in which we have either increased
the contact turnover by replacing at random 10% of all
contacts each year, or decreased contact turnover by
updating contacts only once a year instead of daily
(resulting in larger and longer lasting deviations of the
simulated age-dependent contact distribution from the
POLYMOD matrix). The effect of contact turnover on
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the number of infections additionally prevented by
QIV is marginal (Appendix 8).

Discussion

Our results indicate that annually an average number
of 395,000 influenza infections (representing 11.2% of
all Influenza B infections) can additionally be prevented
without increasing vaccination coverage by switching
from TIV to QIV. Although the composition of TIV
during the evaluation period of our simulations is de-
termined at random, our finding that in 53% of seasons,
the B lineage not contained in TIV causes more infec-
tions than the B lineage which actually is contained in
the vaccine is practically identical to findings from the
US (the Influenza B lineage in TIV failed to match the
predominant circulating B lineage in five out of ten sea-
sons between 2001 and 2011) [11]. It had to be ex-
pected that this percentage should even be higher if the
vaccination coverage was higher, yet this finding fre-
quently is regarded as an indicator of having chosen
the wrong B lineage in TIV.

As QIV is designed to additionally prevent Influenza B
infections, our results strongly depend on the assump-
tions made on the transmissibility and on the duration
of acquired immunity against Influenza B. Cross immu-
nization after infection with an Influenza B lineage or after
successful vaccination with TIV increases Influenza B
immunity in the population. As we show in sensitivity
analyses (Figure 8a-c and Appendix 8), our baseline
value of 60% lineage cross protection leads to a highly
conservative estimate of the effects of QIV. Using lower
cross protection values, the additional benefit of using
QILV instead of TIV can be up to 5.5 times as high as the
baseline result of preventing 395,000 infections per year
(Figure 8a-c). As the antigenic overlap of the two B line-
ages is clearly disadvantageous to their transmission,
mutations which increase the genetic difference between
the two lineages and, thus, reduce the degree of cross pro-
tection should be selected for. To check the effect of this
hypothetical antigenic drift, we have continually lowered

the degree of B lineage cross protection over time in a
sensitivity analysis. If the degree of B lineage cross protec-
tion drops from initially 60% to finally 30%, the additional
benefit of using QIV increases up to an average of 853,000
infections per year. It must be noted that we restrict cross-
immunizing vaccine effects to TIV and omit them when
individuals receive QIV, because it has been shown that
increasing antigen amount does not enhance the efficacy
of influenza vaccines [57,58] and because there is no
convincing evidence that increasing the amount of anti-
gen enhances the efficacy of influenza vaccine [59].

The simulated absolute and relative numbers of Influ-
enza B infections fluctuate strongly from year to year.
Even if they are averaged over 20 simulation years, the
percentage of Influenza B infections varies from 24.6 to
51.3% (95% reference interval in the TIV scenario). This
range is contained in the range of reported values on
clinical Influenza B cases, yet the median percentage of
Influenza B infections (37.3%) is higher than the re-
ported average of 23% of clinical cases who are caused
by Influenza B [6]. This difference between the simulated
percentage of Influenza B infections and the reported
percentage of Influenza B cases may partly be due to a
different fraction of Influenza A and B cases being re-
ported: it has been shown that Influenza A infections
more frequently lead to high fever which may lead to
more doctoral visits and finally to more case reports
[60]. During a mixed A(H3N2) and B season in the
Netherlands, the proportion of laboratory confirmed
Influenza A was higher in hospital samples than in GP
sentinels [61]. This indicates an underestimation of the
incidence with types which tend to cause mild illness
when laboratory data include hospital samples. With in-
creasing severity, the percentage of strains which cause
milder infections should increasingly be underestimated
(e.g. from diagnosis of acute respiratory infections, ARI,
to diagnosis of influenza like illness, ILI, or hospitalization).
Influenza infections are diagnosed by using Flu-rapid
tests. Most of these tests can identify Influenza A and B,
but the proportion of selective tests which only test for
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Influenza A is unknown. This might cause a slight under-
estimation of the true Influenza B incidence. Vynnycky
et al. [31] use in their simulation study different immunity
durations for Influenza A (6 years) and Influenza B
(12 years). We have addressed this in a sensitivity ana-
lysis in which we double the duration of Influenza B
immunity (unlike Vynnycky et al. we use the resulting
duration of 12 years only for naturally acquired immunity
and not for immunity conferred by vaccination). As a con-
sequence, the median percentage of Influenza B infections
among all influenza infections drops to 30.5% in the TIV
scenario, and the average number of infections prevented
by QIV drops to 284,000 per year (preventing 3.5% of all
influenza infections, or 10.8% of all Influenza B infections,
respectively). If, on the other hand, we assume that the B
lineage cross protection is less than 60%, the number of
Influenza B infections increases, and, consequently, QIV
can prevent more infections (Figure 8a-c). Without any B
lineage cross protection, we expect to see more Influenza
B than A infections (54.1 vs. 45.9%) in the TIV scenario,
because TIV only immunizes against one B lineage, but
against both A subtypes. In that extreme case, QIV would
additionally prevent over two million infections per year.
Although the annual incidence of infections strongly
depends on Ry, the number of prevented infections is
nearly constant for R, > 1.5.

The seasonal influenza waves depicted in Figure 4a
show a much higher variability than in the country-wide
statistics published by the Robert Koch Institute [42]:
the coefficient of variation of the simulated annual num-
ber of influenza infections is in the order of 100% (TIV
scenario). This high variability mainly results from using
a population size of only one thousandth of the German
population: geographic differences in immunity patterns
and transmission reduce the variability of the reported
influenza incidence. When adding up the annual inci-
dences of ten randomly picked simulations (to mimic
the combined result of ten locations with independent
transmission), the coefficient of variation reduces to
about 30%. In reality, much more locations ought to be
combined, but their epidemiology must not be assumed
to be independent.

Various contact networks have been proposed to study
the spread of influenza [62-65]. In our simulations, we
use a novel contact network which is based on contact
information gathered for the German population [28],
yet which allows for dynamic changes during the ageing
process of the population. As was shown in a sensitivity
analysis, the network turnover had only negligible effect
on the difference between the TIV and QIV scenario. It
has been suggested to use bipartite networks which ex-
plicitly consider the place of contact (school, work place,
household) [66]. Although the POLYMOD data include
some information on the place of the contact [28], many
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additional assumptions would be required to explicitly
consider contact place in our simulations. Some of the
contacts which regularly occur at school or work place
[67] are covered by the age-dependency of contacts in
the underlying POLYMOD matrix [28], but our contact
network may be too rigid to allow for random encounters
(e.g. during public transportation).

In our simulation studies, we make several simplifying
assumptions: (1) the basic reproduction number is as-
sumed to be equally high for all four influenza strains;
differences between Influenza A and B are only due to
the higher drift frequency of A(H3N2), to the missing B
lineage in TIV, and to B lineage cross protection. (2) In-
fected children are as contagious as adults, yet they have
a longer infectious period (cf. Table 1) and have more
contacts than adults - specifically with other children,
resulting in a larger number of secondary infections
(Figure 3c). (3) We apply the same reduction factor 0.6
to the vaccine efficacy which cross-protects against the
B lineage which is not contained in TIV, and to a vac-
cine design mismatch; likewise, we assume that only
60% of previously immune individuals are immune against
a newly introduced drift variant. Tricco et. al. [10] report
for vaccinees from 18 to 49 years of age that the vaccine
efficacy against Influenza B is 77% if the lineage is con-
tained in TIV and 52% if it is not contained in TIV, re-
spectively. The ratio 52/77 = 0.675 is similar to our ratio
of 0.6, calculated from a Cochrane review for any type
of mismatch. Langley et al. show in a vaccination study
with children that the sero-conversion rate with respect
to the B lineage which is not contained in TIV is
half as high as the sero-conversion rate with respect
to the lineage which is contained in the vaccine [59]
(cf. Appendix 6). Using a B lineage cross protection
of only 50%, leads to a larger than baseline average
annual number of infections prevented by QIV (Figure 8c).
(4) School holidays have been shown to have a strong
impact on the transmission of influenza [62], but we did
not want to further complicate our model by changing
contact patterns during such time periods, as different
school holiday periods are used in different German
states and as they change from year to year. We also do
not distinguish between week days and weekends in our
simulation. Using averaged social contacts throughout
the week has been shown not to affect the major out-
come of influenza simulation studies [63]. (5) Although
vaccination coverage in Germany varies strongly be-
tween different locations and may also slightly vary over
time [68], we use a constant age-dependent vaccination
coverage throughout our simulations [38] which is as-
sumed to represent a country-wide average. (6) We do
not explicitly consider human travel in our simulations
[20,21,47], but we apply a very small “external” infection
rate which is present throughout the year. (7) Individuals
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who were vaccinated against A(HIN1) pdm09 in 2009
were more likely to be revaccinated in 2010 with an odds
ratio (OR) of 6.02 in The Netherlands [69], yet in our sim-
ulations, the OR of revaccination ranges from 2.2 to 6.5
(for details, see Appendix 5). If the reported OR is also
representative for non-pandemic years in Germany, too
few individuals are revaccinated in our simulations and,
thus, the effects of vaccinations may be overestimated.
(8) We use the same average immunity duration after
booster infections as after infections of previously
susceptible individuals as it is not known whether this
immunity duration should be larger or smaller than
after infection. (10) Although great care has been given
to use realistic assumptions on the immunity acquired
by infection, the parameters associated with immunity
are quite uncertain. We have addressed this uncertainty
in various sensitivity analyses, which explore the effect
of the duration of immunity and the degree of heterol-
ogous immunity between the B lineages. It has been diffi-
cult to obtain quantifiable evidence for cross-immunizing
effects between the A strains or between Influenza A
and B, yet an indirect protection may be caused by an
increased production of interferons, tumor necrosis
factor alpha and beta and other cytokines as has been
reported after infection with influenza and various other
viral infections [70-73]. As we did not want to incorpor-
ate non-influenza infections, we have restricted the
study on the effects of unspecific protection to a sensitivity
analysis which showed only a minor effect of indirect
protection (Appendix 8).

Conclusions

4Flu is a novel simulation tool which describes the spread
of influenza viruses using a dynamically evolving contact
network, reflecting German demography, with different
vaccinations strategies. The results indicate that the
current vaccination with TIV in Germany, although cover-
ing less than 30% of the total population [38], substantially
reduces the number of influenza infections compared to
no vaccination. Replacing TIV with QIV would further
reduce Influenza B incidence by 395,000 to 2,180,000
influenza infections per year, depending on the degree
of B lineage cross protection.

Appendix 1 Dynamic changes in demographic
structure and risk status

The observed and predicted demographic distributions
of Germany are given in 1-year cohorts for every year
until 2060, together with annual birth rates [27]. Our
simulations start with the demographic distribution of
1993. Each individual is given a random birth day; in
each simulation year, individuals are added according to
the predicted number of births. If the number of indi-
viduals of a cohort declines from one year to the next,
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individuals are chosen to die during the simulation year; if
it increases, individuals are introduced as “immigrants”.
Birth, death and immigration take place at random times
during the year. On each birthday, an individuals age
grows by one year. Individuals are also given a risk status
which influences their probability of being vaccinated and
which may influence the clinical outcome of an infection.
Some individuals have an increased risk when they are
born, others acquire a risk status over time. In order to
avoid sudden transitions from one age group to the next
one, we assume that the percentage with risk changes
linearly within each age group, whereby we keep the total
percentage in the age group identical to the literature
value. Due to births, ageing and death, the risk fractions in
the simulations keep drifting away from the specified
values given in Table 1. At each birthday, it is checked
whether there are currently too many or too few indi-
viduals with risk status in the cohort of the individual
who is now one year older; if needed, the individual’s
risk status is changed in order to reduce this deviation.

Appendix 2 Dynamic changes in contact structure
In order to transmit the infection from one individual to
another one, individuals are connected in a dynamic con-
tact network. The average number of contacts depends on
the age of the individual and on the ages of the contact
persons, and is given by the POLYMOD matrix [28].
Before initializing the contact network, each individual
“initiates” on average 5 contacts with others, whereby
the age distribution of these contacts is proportional to
the numbers given by the POLYMOD matrix. These
contacts are classified as “outgoing contacts” for the
source individual and as “incoming contacts” for the
contacted individual (i.e. on average, every individual
has 10 contacts). For each newborn individual, a random
person of the age-group from 20 to 40 years is chosen
(denoted as the “mother”) who initiates a contact to the
newborn individual. If the mother is connected to other
individuals (which usually is the case), the newborn ini-
tiates a contact to the individual whose age is closest to
that of the mother; thus newborns are initially connected
in triangles. Immigrants are incorporated into the existing
contact network in the same way as newborns. Due to
births, immigrations, ageing and deaths, the contact dis-
tribution of “outgoing” contacts keeps drifting away
from the values specified by the POLYMOD matrix. In
order to correct this, the distribution of “outgoing” con-
tacts is compared at the end of each simulation day with
the POLYMOD matrix assuming a population average of
5 “outgoing” contacts per individual. If too many contacts
between two age groups exist, superfluous contacts are
chosen at random and removed; if too few contacts exist,
random individuals are chosen from the required age
groups and connected. In a sensitivity analysis this “repair
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mechanism” is only performed annually instead of daily
(resulting in lower network turnover); or an additional
random percentage of contacts is removed and replaced
by new random contacts (resulting in higher network
turnover). In order to let the contact network adjust to the
demographic structure of Germany, we run the simulation
for 10 years (“contact network initialization”) without
changing the demographic structure of Germany before
introducing immunity and infections in the simulations.

Appendix 3 Transmission dynamics and basic
reproduction number

An infected individual does not necessarily infect all of
his or her contacts; the expected number of secondary
infections in a completely susceptible population is given
by the basic reproduction number R,. In order to calcu-
late the infection probability per contact from the basic
reproduction number, the “next generation matrix” is
calculated which combines the contact information in
the population and the duration of contagiousness [32].
As we start the simulations with 80,976 individuals, the
contact network can be described by an 80,976 x 80,976
matrix which is mostly filled with zeros. The next gener-
ation matrix is defined by the product of the network
matrix and the average duration D, of contagiousness
(which depends on the age a of the infectious individual).
The largest eigenvalue E of this matrix is calculated by
power iteration (Von Mises iteration). The probability
that a given contact of an infectious individual of age a
is infected by that individual is then given by p, = R;D,/E
[30]. During the first 5 years of the initialization of the
contact structure, the largest eigenvalue of the next
generation changes markedly, but after that it remains
stable, indicating that the contact network has con-
verged to a steady-state. As influenza transmission is
assumed to vary seasonally, we multiply the transmis-
sion probability with a seasonal factor: p,(1 + 0.43cos
(2n(t-173)/365)). The seasonality is chosen such that
the transmission reaches its maximum around Christ-
mas where it is 43% higher than the average value [31].
When an individual becomes contagious, a random de-
cision is made for each contact whether an infection
event occurs. Such an event can either lead to the in-
fection of a susceptible individual or booster existing
immunity. The time point of infection is sampled at
random from the infectious individual's period of infec-
tiousness, assuming a uniform distribution. Additional to
the transmission of infection between individuals, all indi-
viduals (irrespective of their age or immunity status) are
constantly exposed to a very low infection rate from the
“outside” of the population. Transmission of the four in-
fluenza variants occurs independently, thus, on very rare
occasions, individuals may be infected with more than one
variant at the same time.
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The basic reproduction number of the model is cali-
brated such that the median percentage of young adults
(16 to 60 years of age) who are infected during the simu-
lation year 2006/07 closely matches the observed value
of 10.6% of German health care workers and controls
who had a serologically confirmed influenza infection or
at least a fourfold rise in influenza antibody titer during
the 2006/07 season [45]. The chosen baseline value of the
basic reproduction number of 1.575 yields a median infec-
tion rate of 10.6% (calculated from 2,000 simulations).

Appendix 4 Acquisition and loss of immunity
Immunity is assumed to be lost at a constant rate, leading
to an exponentially distributed duration of immunity. The
average duration of immunity is shorter if the immunity is
caused by vaccination than when it is caused by infection.
Immunity can be boostered by another infection or by a
successful vaccination. If a booster event occurs, a new ex-
ponentially distributed duration of immunity is calculated
for the individual. If the new duration is longer than the
existing immunity, the individual’s immunity is extended
accordingly. Although we use the same average length of
immunity when calculating the new “booster immunity”
duration, using the maximum of the existing and the new
immunity duration automatically leads to a larger average
duration of immunity after a booster infection than
after a non-booster infection. If an individual is infected
or successfully vaccinated with a virus of one of the B
lineages, a cross-immunizing event can occur which pro-
tects the individual also against the other B lineage (this is
determined by calculating a random number). Such cross-
immunizing events can immunize susceptible individuals
or booster existing immunity. In most of our analyses, we
keep the percentage of B lineage cross protection constant,
but in a sensitivity analysis, we allow it to decrease linearly
over time, starting with a value of 60% in 2001 when
B/Vic is introduced and reaching the final value of e.g.
30% on the last simulation day.

A single infection with Influenza A(H1N1) is assumed
to result in an immunity which lasts on average for
6 years [31]. As we assume that new A(H1N1) drift vari-
ants appear on average every 7 years and that 60% of
the old immunity is active against new drift variants
(see Appendix 6 for details), immunity loss due to drift
alone would, therefore, result in an average immunity
duration of 7 years/(1-0.6) = 17.5 years. In order to ob-
tain an average immunity duration of 6 years, we as-
sume that immunity is constantly lost at a rate A while
no drift variant is introduced. The average immunity
duration Dy is then given by D;= ((1-0.6)/7 +1)~!. The
value A = 1/(9.13 years) which yields an average duration
of 6 years is used for all four influenza strains (due to
the higher drift frequency, the average immunity duration
against A(H3N2) results in about 4.5 years).
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The average duration of immunity after vaccination is
calculated from a figure given by Ruf et al. [44] in which
the sero-protection rate (SPR) (i.e. the fraction of vaccines
with a heamagglutination inhibition titer of > 40) is shown
for various time periods after vaccination. Values of the
percentage of vaccinees who were protected ¢ months
after vaccination were read from a figure using Aotsuka’s
freeware package “Data Picker” M: (Shareware Version
1.2. http://hp.vector.co.jp/authors/VA019223/). We obtain
the parameters of the function py + (100-py)-VE.e**? by
least squares fit to the picked values. The SPR of vaccinees
who were immune before vaccination (p,) is estimated
to be 28.6% (95% CI from 23.5 to 33.7%), the fraction of
individuals who were unprotected before vaccination,
yet become protected by vaccination (VE) is estimated
as 92.2% (95% CI from 84.9 to 99.6%), the immunity loss
rate a is estimated to be 0.553 per year (95% CI from
0.394 to 0.729). The average duration of vaccination derived
immunity (in the absence of drift) is given by I1/a=
1.81 years (95% CI from 1.37 to 2.54 years).

Each newborn individual inherits maternal antibodies
against all influenza strains or lineages against which his
or her mother is immune at the time of birth; maternal
antibodies protect the newborn individual against infec-
tion for some months. The immunological and epidemio-
logical statuses of immigrants also need to be initialized:
this is done by choosing a random individual of similar
age (preferably in the year cohort of the immigrant) and
transferring his or her immunity status and infection
status to the immigrant. In a sensitivity analysis, we
additionally consider the possibility that infection causes
a short-term unspecific protection which temporarily pre-
vents infection with any one of the influenza viruses.

Appendix 5 Vaccination coverage

The vaccination coverage depends on the age and the risk
status of individuals. Furthermore, people who were vacci-
nated in the previous year are more likely to be vaccinated
again. The baseline revaccination factor f,., of 2 means
that previously vaccinated individuals are twice as likely to
be chosen for vaccination; it can be interpreted as the
“relative risk” (RR) of re-vaccination given a previous vac-
cination. At the beginning of each simulation year, each
individual is assigned a “vaccination day”, irrespective of
whether this individual will be vaccinated or not. The vac-
cination decision will be made on that day. If a percentage
¢, of individuals of age a and risk category r is intended
to be vaccinated in a simulation year, we first calculate the
expected number of vaccinees ¢, , N, , whereby N, , is the
number of individuals in the population with age a and
risk status r. If there are N',,, previously vaccinated and
N, previously unvaccinated individuals, we sample
(Ca,r Na,r) * (ﬂev N+u,r)/(Nia,r +ﬁ‘ev N+a,r) previously vac-
cinated and (c,, N, N /(N ar+frev N'ay)
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previously unvaccinated individuals to be vaccinated.
During the vaccination period, it is continuously memo-
rized how many individuals of each combination of age
group, risk status and previous vaccination status have
already been vaccinated and how many of them have
already made the “decision” not to be vaccinated. Due
to demographic changes (births, ageing, deaths, and im-
migrations) and due to individual changes in the risk
status, individuals may change their age group or risk
status during the vaccination period. If this happens,
the memorized vaccination statistics is changed accord-
ingly, so that the exact numbers of yet vaccinated and of
yet unvaccinated individuals are known at any time dur-
ing the vaccination period.

For an approximate calculation of the OR of revaccin-
ation, we neglect deaths and immigrations and assume
that the vaccination coverage in the two subsequent years
is the same (ie. N',,=¢,, :N,, and N, = (1-c, )N, ),
the relationship between the revaccination factor and
the odds ratio (OR) of being vaccinated again can be
approximately calculated as follows:

(Ca-,rfrevcﬂﬁf) z (l—cM + (frev_l)cﬂﬂ”) z
(Ctlﬂtfrev(l_cﬂ»*’)) z (Cﬂ»rfrev (l_cﬂa’”)) z
:frev(l_cﬂs'" + (frev_l)cﬂf)
1-c,,

OR =

)

whereby z:NZW/(]\F ar+frewN o). Using the standard
parameter value of f,., = 2, we get OR = 2/(1-c,,). For a
vaccination coverage of 20%, the OR is 2.5, for 60%, it
is 5.0.

Appendix 6 Drift variants, vaccine mismatch, and
cross protection

Smith et al. [35] constructed an antigenic map of Influ-
enza A(H3N3) data from 35 years of surveillance (1968
to 2003) and found 11 antigenically distant clusters; the
average antigenic distance between the centers of con-
secutive clusters was 4.5 units (SD 1.3). As influenza
vaccines are updated when there is an antigenic differ-
ence of at least 2.0, these clusters can be regarded as
representing genetically relevant drift variants. As ten
new drift variants occurred in the time period of 35 years,
we get an average duration of D =3.5 years for new A
(H3N?2) drift variants (95% CI from 2.2 to 6.8). No direct
estimates for the duration between consecutive Influenza
B drift variants are available, but as they change at a rate
which is about two to three times lower than this [3], we
assume the average sojourn time of Influenza B drift var-
iants to be 7 years. Judging by the frequency of changes
in vaccine composition from 1987 to 2000, the variabil-
ity of A(HIN1) may be similar to that of Influenza B [3];
we, therefore, use the same average duration of 7 years
for Influenza A(HIN1) drift variants. For each one of
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Table 3 Sero-conversion rates as reported by Langley et al. [59], defined as the proportion of vaccinees with a pre-
vaccination titer <1:10 and a post-vaccination titer >1:40, or a pre-vaccination titer >1:10 and at least a 4-fold increase

in post-vaccination titer

TIV vaccination group

Seroconversion rate

With respect to B Yamagata

With respect to B Victoria

TIV-Vic (n=870)
TIV-Yam (n=877)

41.3% (n=359)
734% (n = 644)

71.5% (n=622)
29.9% (n=262)

Abbreviations: TIV-Vic, trivalent influenza vaccine with Victoria lineage B strain; TIV-Yam, trivalent influenza vaccine with Yamagata lineage B strain. The numbers

of sero-converters (n) were calculated from the percentages.

the two A subtypes and the two B lineages, an independ-
ent random number r is calculated at the beginning of
each simulation year to determine whether the circulat-
ing variant is replaced by a new drift variant. If »< 1/D, a
new drift variant is introduced.

The possibility of a vaccine design mismatch is only
considered for years in which new drift variants appear.
Of course, TIV vaccination can only be affected by an
Influenza B mismatch, if the mismatched B lineage is ac-
tually contained in the vaccine. For the last 18 years,
four mismatch events have been reported (A(H3N2) in
2003 and 2004, and A(HIN1) in 2006 and 2009 [42]).
For this time period, we calculate that 18/3.5 = 5.14 new
drift variants for A(H3N2) and 18/7 = 2.57 new drift vari-
ants for A(HIN1) appeared. For the B lineage which was
included in TIV during the 18 years, we also calculate
18/7 =2.57 new drift variants. As we expect altogether
10.28 drift events and observed 4 mismatch events, we
calculate a mismatch probability of 40% per drift. We
use this probability for all four influenza variants, in-
cluding the two B lineages for which no vaccine design
mismatch has been reported.

The immunity shared between a previously circulating
variant and a new variant is not well known. We infer
information on this shared immunity from vaccination

studies summarized by Jefferson et al [39]: well-matched
TIV vaccination protects on average 73% of healthy adults,
whereas mismatched TIV vaccination protects only
44%. We take the ratio of 44/73 = 60% also as indicator
for the shared immunity between subsequent drift vari-
ants. 60% of the individuals who were immune against
the previously circulating variant are also immune against
the new drift variant, whereas the remaining 40% are sus-
ceptible to the new drift variant. For the sake of simplicity,
we replace variants by new drift variants at the beginning
of a simulation year (i.e. on July 1st). We do not allow co-
circulation of the old and the new variant in the simula-
tion, and we assume that a previously circulating variant
will never be introduced again.

We furthermore use this estimate of 60% for shared
immunity between the two B lineages: if an individual is
infected with one B lineage, an additional immunization
(or booster event) with respect to the other lineage takes
place with a probability of 60%. Likewise, TIV vaccin-
ation can cause immunity (or booster events) against
the B lineage which is not contained in the vaccine; the
age-dependent vaccine efficacy is multiplied by 0.6 to
obtain the efficacy against the missing lineage. We re-
strict this cross-immunizing vaccination effect to TIV
because there is no convincing evidence that increasing

Influenza A

TIV

Figure 9 Immunologic results of about 500,000 TIV and QIV vaccinations which are performed in the 20 year evaluation period of a
randomly selected simulation. The pie charts display the percentages of vaccinees who are immunized (green), boostered (blue) or fail to
respond immunologically (grey). Immunologic responses with respect to A(HINT) and A(H3N2) are averaged as “Influenza A", and immunologic
responses with respect to B/Vic and B/Yam are averaged as “Influenza B". As TIV only contains one B lineage, the immunologic response to the
missing lineage is either missing (grey) or it is caused by a cross immunization (light green) or cross-immunizing booster event (light blue).

Influenza B

Qiv
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Table 4 Sensitivity analysis exploring the influence of the basic reproduction number R,

Ro Influenza A Influenza B Prevented
No vaccination TIV or QIV No vaccination TIV Qlv QIV-TIV %
1.2 5880 1954 3054 1400 1075 325 9.5
(5823-5936) (1923-1985) (3018-3089) (1379-1422) (1056-1095) (306-344) (89-10.1)
13 7221 3061 3754 1999 1626 373 7.3
(7151-7290) (3018-3104) (3709-3798) (1970-2028) (1599-1652) (350-396) 6.8-7.7)
14 8359 4106 4363 2541 2167 374 55
(8276-8442) (4055-4158) (4311-4415) (2506-2577) (2133-2201) (350-398) (52-59)
15 9302 5009 4889 3063 2677 386 48
(9209-9395) (4946-5071) (4830-4947) (3021-3105) (2638-2717) (360-411) (44-5.1)
1.575 9820 5597 5229 3346 2951 395 43
(9750-9891) (5550-5643) (5183-5275) (3313-3379) (2920-2982) (376-414) (4.1-4.5)
16 10154 5787 5345 3482 3086 396 42
(10051-10256) (5716-5858) (5280-5410) (3435-3529) (3041-3132) (370-422) (3.9-4.5)
1.7 10893 6510 5736 3880 3469 411 39
(10784-11002) (6433-6587) (5664-5809) (3826-3934) (3419-3518) (385-437) (3.7-4.2)
1.8 11494 7116 6060 4218 3820 398 35
(11374-11614) (7032-7200) (5982-6138) (4160-4277) (3765-3875) (372-424) (3.3-37)
19 12063 7669 6383 4523 4139 383 3.1
(11935-12190) (7578-7760) (6301-6466) (4461-4584) (4081-4198) (357-409) (29-33)
20 12354 8183 6640 4790 4404 385 30
(12227-12480) (8087-8279) (6550-6731) (4724-4855) (4342-4467) (359-411) (2.8-3.2)

Average annual results (with 95% confidence intervals) obtained for the 20 year evaluation period (calculated from 1,000 simulations for each combination of R,
and vaccination strategy in a simulated population of about 80,000 individuals (2,000 simulations each for the baseline value of R, =1.575; boldface line). The last
column shows what percentage of all influenza A and B infections which occur under TIV vaccination can additionally be prevented by QIV.

Table 5 Sensitivity analysis exploring the influence of the duration of naturally acquired immunity D,

D, Influenza A Influenza B Prevented
No vaccination TIV or QIV No vaccination TIv Qlv QIV-TIV %

4 12644 6965 6743 4302 3785 517 46
(12548-12740) (6896-7035) (6681-6805) (4256-4349) (3741-3829) (490-545) (4.3-4.8)

6 9820 5597 5229 3346 2951 395 43
(9750-9891) (5550-5643) (5183-5275) (3313-3379) (2920-2982) (376-414) (4.1-4.5)

8 8482 4944 4474 2924 2595 329 4.1
(8385-8579) (4878-5010) (4410-4539) (2879-2970) (2552-2638) (305-354) (3.8-44)

10 7682 4524 4055 2631 2363 267 3.7
(7585-7780) (4460-4589) (3990-4119) (2585-2676) (2320-2406) (243-291) (3.3-40)

12 7209 4259 3766 2476 2194 282 4.1
(7110-7307) (4195-4323) (3702-3831) (2432-2520) (2152-2236) (257-306) (3.7-4.5)

Average annual results (with 95% confidence intervals) obtained for the 20 year evaluation period (calculated from 1,000 simulations for each combination of D,
and vaccination strategy in a simulated population of about 80,000 individuals (2,000 simulations each for the baseline value of 6 years; boldface line). The
immunity loss rate (baseline value 1/(9.13 years)) is varied to obtain the average duration of immunity given in the D, column; these values apply to A(HIN1) and
to the B lineages. Due to the higher drift frequency, the resulting durations for A(H3N2) are lower: 3.2 years, 4.5 years, 5.5 years, 6.4 years and 7.1 years,
respectively. The last column shows what percentage of all influenza A and B infections which occur under TIV vaccination can additionally be prevented by QIV.
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Table 6 Sensitivity analysis exploring the influence of the degree of Influenza B lineage cross protection L

L Influenza B Prevented infections
No vaccination TIV Qlv QIV-TIV %
0% 8283 6552 4372 2180 179
(8224-8394) (6477-6627) (4313-4431) (2142-2217) (17,6-18,2)
10% 7557 5760 4009 1751 154
(7491-7649) (5692-5827) (3954-4063) (1716-1786) (15,1-15,7)
20% 6961 5140 3772 1368 12,7
(6890-7037) (5079-5200) (3720-3824) (1336-1399) (12,5-13,0)
30% 6491 4624 3574 1050 102
(6445-6587) (4569-4680) (3526-3623) (1020-1080) (10,0-10,5)
40% 6144 4216 3386 830 84
(6070-6206) (4163-4269) (3339-3433) (801-859) (81-87)
50% 5837 3865 3276 589 6,2
(5783-5916) (3815-3914) (3230-3322) (562-615) (59-6,5)
60% 5229 3346 2951 395 43
(5183-5275) (3313-3379) (2920-2982) (376-414) (4.1-4.5)

Average annual results (with 95% confidence intervals) obtained for the 20 year evaluation period (calculated from 1,000 simulations for each combination of L
and vaccination strategy in a simulated population of about 80,000 individuals (2,000 simulations each for the baseline parameter value L = 60%; boldface line).
The last column shows what percentage of all influenza A and B infections which occur under TIV vaccination can additionally be prevented by QIV.

the antigen amount enhances the efficacy of influenza
vaccines [57-59]. Tricco et. al. [10] report for vaccinees
from 18 to 49 years of age that the vaccine efficacy
against Influenza B is 77% if the lineage is contained in
TIV and 52% if it is not contained in TIV, respectively.
The ratio 52/77 = 0.675 indicates a B lineage cross pro-
tection of 67.5%. Langley et al. examine in a vaccination
study with children what percentages seroconvert with
respect to the B lineage which is contained and which is
not contained in TIV. As they use two different TIV
vaccines which either contain B/Vic or B/Yam, they ob-
tain four different sero-conversion rates with respect to

the Influenza B lineages [59] (summarized in Table 3).
We have developed a maximum likelihood model based
on the assumption that either one of the two TIV vac-
cines causes a direct sero-conversion S with respect to
the B lineage contained in the vaccine and an indirect
effect S x with respect to the lineage not contained in
the vaccine. The joint likelihood L of the observations

) . (870 359 511 ( 870
is then given by L = <359>(Sx) (1-8x) <622>

$62(1-5)8 (211 ) SOH(1-5)2 ( gé;) (Sx) (1-5%)°,

Table 7 Sensitivity analysis exploring the influence of the duration of indirect protection against infection

z Annual mean number of Annual mean number of Annual mean number of Percentage prevented
infections with TIV infections with QIV infections prevented by QIV

0 8943 8548 395 43
(8885-9001) (8491-8604) (376-414) (4.1-4.5)

7 9024 8617 407 43
(8948-9100) (8541-8694) (367-447) (3.9-48)

14 9176 9727 449 4.7
(9097-9254) (8652-8802) (409-488) (4.2-5.1)

21 9186 8722 465 49
(9114-9259) (8649-8794) (424-505) (4.5-5.3)

28 9151 8732 420 43
(9077-9226) (8660-8804) (378-461) (3.9-48)

Average annual results (with 95% confidence intervals) obtained for the 20 year evaluation period (calculated from 1,000 simulations for each combination of the
unspecific protection and vaccination strategy in a simulated population of about 80,000 individuals (2,000 simulations each for the baseline value indicated by
z=0; boldface line). Indirect protection begins 1 day after infection and ends z days after infection; it prevents infection with any one of the influenza viruses. The
last column shows what percentage of all influenza infections which occur under TIV vaccination can additionally be prevented by QIV.
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Table 8 Sensitivity analysis exploring the influence the contact network turnover

Network Annual mean number of Annual mean number of Annual mean number of Percentage Contacts persist

turnover  infections with TIV infections with QIV infections prevented prevented by QIV for 40 years
9039 8596 442 49

Lower 0.030%
(8955-9123) (8513-8680) (416-470) (4.6-5.2)
8943 8548 395 4.3

Baseline 0.361%
(8885-9001) (8491-8604) (376-414) (4.1-4.5)
9135 8719 416 45

Higher 9.310%
(9053-9218) (8638-8800) (390-442) (4.2-4.8)

Average annual results (with 95% confidence intervals) obtained for the 20 year evaluation period (calculated from 1,000 simulations for each combination of
network turnover and vaccination strategy in a simulated population of about 80,000 individuals (2,000 simulations each for baseline turnover; boldface line).
Higher network turnover is obtained by replacing a random sample of 10% of all contacts annually. Lower turnover is obtained by calling the “repair routine”
which matches the simulated contact network with the POLYMOD matrix once a year instead of daily (this leads to larger and longer lasting differences between
the simulated network and the POLYMOD matrix). The last column shows what percentage of the “childhood acquaintances” of 10 year old children at the
beginning of the simulation are still among their contacts at the end of the simulation when they are 50 year adults.

omitting the constant factors, this simplifies to L
(Sx)359 + 262(1 _ )51+ 6155622+ 644(] _ 51248 +233

The maximum likelihood estimates are S =72.5% (95%
confidence interval CI: 70.3-74.5, based on the profile
likelihood) and x =49.1% (CI: 45.7-52.5), respectively, i.e.
the sero-conversion rate of the B lineage not contained
in TIV is about half as high as that of the lineage which
is contained in the vaccine. Having obtained three indica-
tors for the amount of B lineage cross protection (49.1%
Langley, 60% Jefferson and 67.5% Tricco, respectively), we
have decided to use the value 0.6 as the baseline value in
our simulation studies.

Appendix 7 Results of TIV and QIV vaccination
During the 20 years of each simulation’s evaluation
period, about half a million TIV or QIV vaccinations are
performed in a population of 80,000 individuals. Due to
the efficacy of the vaccine, about 38 percent of all vacci-
nations remain without immunologic effect (Figure 9).
As many individuals are already immune when they are
vaccinated, nearly a third of the successful vaccinations
can only booster existing immunity. On average, 35% of
all vaccinees newly acquire immunity against Influenza A.
As TIV only contains one B lineage, the effect on Influ-
enza B would only be half of that if no cross-immunizing
events occurred. Due to cross-immunizing vaccination ef-
fects (light green and light blue areas), the effect of TIV
vaccination is less pessimistic (Figure 9, middle). Using
QLV, the failure rate drops to 38% (conveyed by an overall
vaccine efficacy of 62%).

Appendix 8 Sensitivity analyses

In the following, we present the results of sensitivity
analyses: the number of infections with and without vac-
cination is first accumulated for the 20 year evaluation
period of each simulation and divided by 20 to obtain
mean numbers of infections per simulation year. These
means are used to calculate overall averages and 95%
confidence intervals (given in Tables 4, 5, 6, 7 and 8).

Pair-wise differences between the TIV scenario and the
QIV scenario of each simulation allow calculating the
number of influenza infections prevented by TIV. The
values in the tables are arithmetic means (averaged over
1,000 or 2,000 simulations) and their 95% confidence
intervals. Please note that the percentages reported in
Tables 4, 5, 6, 7 and 8 are calculated as arithmetic
means of the percentages observed in the individual
simulations. Calculating the percentages from the mean
numbers of infections yield slightly different results: for
the baseline parameter setting (RO =1.575 in Table 4),
the calculation based on the mean values would yield
100%*395/(5597 + 3346) = 4.4% of infections prevented
by QIV whereas the average percentage (calculated from
2,000 simulations) yields 4.3%.
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