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Abstract

Background: Aggregate comorbidity scores are useful for summarizing risk and confounder control in studies of
hospital-associated infections. The Chronic Disease Score — Infectious Diseases (CDS-ID) was developed for this
purpose, but it has not been validated for use in studies of Clostridium difficile Infection (CDI). The aim of this study
was to assess the discrimination, calibration and potential for confounder control of CDS-ID compared to age alone
or individual comorbid conditions.

Methods: Secondary analysis of a retrospective cohort study of adult inpatients with 2 or more days of antibiotic
exposure at a tertiary care facility during 2005. Logistic regression models were used to predict the development of
CDI up to 60 days post-discharge. Model discrimination and calibration were assessed using the c-statistic and
Hosmer-Lemeshow (HL) tests, respectively. C-statistics were compared using chi-square tests.

Results: CDI developed in 185 out of 7,792 patients. The CDS-ID was a better standalone predictor of CDI than age
(c-statistic 0.653 vs 0.609, P=0.04). The best discrimination was observed when CDS-ID and age were both used to
predict CDI (c-statistic 0.680). All models had acceptable calibration (P>0.05).

Conclusion: The CDS-ID is a valid tool for summarizing risk of CDI associated with comorbid conditions.
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(CDs-ID)
What is New? Background

The presence and severity of underlying comorbid con-
e CDS-ID was a good predictor of CDI (c=0.65) ditions are important contributors to the risk of nosoco-
e CDS-ID was a significantly better standalone mial infections such as Clostridium difficile Infection
predictor than age (CDI) [1-3]. The construct of comorbidity is complex
e CDS-ID plus age resulted in the highest because it represents information on a wide variety of
discrimination and the greatest degree of disease states, underlying biological mechanisms, and a
confounder control in our example spectrum of disease severity. Many of these disease pro-
e There was no difference in models using CDS-ID cesses are also highly correlated, making the estimation
compared to individual comorbidities of individual comorbidity-specific effects challenging. As
e CDS-ID is a valid tool to predict comorbidity- a result, there has been considerable variability in the
related risk in studies of CDI methods used to measure comorbidity in studies of risk

factors for nosocomial CDI [1-6]. The most common
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comorbid condition of interest, potentially resulting in in-
adequate statistical power because estimation of more var-
iables requires more degrees of freedom. Compounding
this problem is the fact that many studies of CDI are
conducted in the setting of an outbreak and are limited by
relatively small sample sizes [4,6], leading to the potential
for overfitting of regression models and reducing power to
detect true associations [7].

Aggregate comorbidity scores are most commonly used
for risk stratification (e.g. prediction of an individual’s risk
of disease based on the value of the score), confounder
control, or some combination of both applications. Aggre-
gate scores have the advantage of summarizing the risk of
the outcome attributable to a particular set of covariates
into one summary measure, thereby reducing the number
of parameters to be estimated while still controlling for
potential confounding effects. Well-known comorbidity
scores such as the Charlson Index [8], Horn Index [9], and
the Chronic Disease Score [10], while commonly used in
studies of risk factors for CDI and other HAI [1,4,5,11]
were developed specifically for the prediction of mortality
and related outcomes and not the development of infec-
tion while in the hospital. Both the Charlson Index and
the Chronic Disease Score were shown to perform sub-
optimally for the prediction of nosocomial infection [12].

The Chronic Disease Score — Infectious Disease (CDS-
ID) is an adaptation of the original Chronic Disease Score
(CDS) for the assessment of comorbidity in relation to
hospital-associated infection (HAI) based on medication
orders written within 24 hours of hospital admission
[10,13]. The CDS-ID was developed and validated to pre-
dict the acquisition of nosocomial vancomycin-resistant
enterococci (VRE) or methicillin-resistant Staphylococcus
aureus (MRSA) infections during hospitalization rather
than mortality or health status [13]. Although developed
specifically for VRE and MRSA, it is thought that this gen-
eralized score is potentially suitable for use in studies of
other HAI because many hospital-associated infections
share similar comorbidity-related risk factors [13]. How-
ever, it is well known that the performance of prognostic
scores may vary significantly depending on the underlying
characteristics of the population in which the score is used,
particularly when the outcome of interest differs from that
which the score was originally developed to predict [14,15].
Models using general comorbidity scores in some popula-
tions have been observed to predict disease no better than
models including age alone, highlighting the need to verify
performance of scores for new endpoints [15].

While CDS-ID has been used in at least one previous
study of CDI and has been demonstrated to be signifi-
cantly associated with the risk of CDI infection [16], the
performance of the score for the prediction of CDI has
not been fully evaluated. In addition, patient age tends
to be associated with the burden of underlying illness
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and is usually readily available without additional data
collection. It is unknown whether summary comorbidity
scores provide sufficient improvement in outcome pre-
diction to justify the effort and expense of collecting
additional data. Therefore, the aim of the present study
was to determine the discrimination and calibration of
the CDS-ID for the prediction of CDI, to assess the rela-
tive importance of accounting for age either by itself or
in concert with CDS-ID, and to assess the potential for
confounding reduction with these measures, with spe-
cific application to the association between antibiotic ex-
posure and the risk of CDIL.

Methods

Patient population

We used data from a previously-established cohort of
adult patients receiving two or more days of antibiotics
during an inpatient hospitalization occurring between 1
January and 31 December 2005 at the University of
Rochester Medical Center (URMC) in Rochester, New
York [16]. The primary aim of this study was to examine
the association between cumulative, time-varying mea-
sures of antibiotic exposure and the risk of CDI. Eligibil-
ity criteria have been described elsewhere [16]. Briefly,
patients were excluded if they had a history of CDI
within 60 days prior to admission or if they developed
CDI in the first 2 days of hospital stay, as infections de-
veloped during this time frame are considered to have
been acquired in the community rather than in the hos-
pital setting [17]. Individuals who were not at risk of the
event because of a length of stay less than 2 days and
those who received only short courses of antibiotics
were excluded by not considering in the analysis any pa-
tients who received fewer than 2 days of antibiotic treat-
ment. Patients were also excluded if they were admitted
to a psychiatric ward. Hospital administrative databases,
including pharmacy and billing records, were used to
identify all patients who received two or more days of
antibiotic exposure as inpatients during the study period.
Information on patient demographics, units of stay dur-
ing hospitalization, and dates of admission and discharge
were also collected electronically. The secondary dataset
used in this analysis contained only age, high risk anti-
biotic use, individual comorbidities and the CDS-ID
score. Approval for this study was obtained from the
URMC Research Subjects Review Board.

Outcome and predictor variables

For each qualifying hospitalization, information was
obtained regarding the International Classification of
Diseases — 9" Revision (ICD-9) procedural and diagnos-
tic codes associated with that hospital stay. Information
was also available on the timing, dose, and route of
administration of all medications received during each
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qualifying hospitalization. In the original study, patients
were allowed to contribute more than one hospitalization
to the analysis, and each hospitalization was followed for
up to 60 days post-discharge for the development of CDI,
defined as detection of C. difficile toxin in an unformed
stool by enzyme immunoassay. Microbiology laboratory
reports from all three laboratory systems that serve the
hospitals and physicians’ offices in the community
(URMC, Rochester General Hospital, and ACM clinical
laboratory) were reviewed to monitor for post-discharge
development of CDLI. In order to avoid dependence among
hospitalizations contributed by the same patient, we se-
lected the first hospitalization contributed by each patient
during the study period for the present analysis. Informa-
tion was utilized regarding age, CDS-ID score, presence or
absence of CDI at the end of the study period, and
whether or not they were exposed to any antibiotics
considered high risk for inducing CDI during the at-risk
period. Agents were identified as high risk based on previ-
ous observations within this cohort, and include the
following antibiotic classes: any cephalosporin or carba-
penem, fluoroquinolone, intravenous vancomycin, or
[-lactamase inhibitor combination [16].

For each patient, the CDS-ID score was calculated
from information on medication orders written within
the first 24 hours of hospital admission. Study investiga-
tors generated a list of all drugs received by all patients
included in the study. Drugs were classified according to
the main indication for which they are typically pre-
scribed using Goodman and Gilman’s The Pharmaco-
logical Basis of Therapeutics [18] as well as input from
clinical (medical and pharmacy) faculty members. Medi-
cations representing treatment for diabetes, peptic ulcer
disease, respiratory illness, kidney disease, transplant,
and cancer were identified, and patients were considered
to have a particular comorbidity if they had been pre-
scribed one of the agents used for its treatment. The
presence of each comorbidity was weighted according to
the regression coefficients identified in the development
study [13]. Diabetes, peptic ulcer disease (PUD), respira-
tory illness, kidney disease, transplant, and cancer were
worth 1.57, 1.83, 1.38, 3.13, 1.0, and 1.07 points, respect-
ively. Regression weights were then summed across
present conditions to provide a summary measure of the
risk of CDI attributable to underlying illness. For ex-
ample, a patient with diabetes and cancer would have a
CDS-ID score of 2.64 (1.57 points for diabetes plus 1.07
points for cancer).

Data analysis

Descriptive analysis

The distributions of numeric variables (e.g. age and CDS-
ID) were examined for normality using Kolmogorov-
Smirnov test. Variables determined to be non-normally
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distributed (p<0.05) were described using the median and
interquartile range, defined as the mathematical difference
between the 75" and 25" percentile of the distribution.
Clinical characteristics of patients with and without CDI
were compared using Wilcoxon rank-sum tests for non-
normally distributed numeric values, and Fisher’s exact or
chi-square tests for categorical variables, as appropriate.

Model discrimination

In order to evaluate discriminatory ability, three logistic
regression models were constructed. In the first and
second models, the risk of CDI was estimated using
CDS-ID and age, respectively, as the sole independent
predictor variables. The third model expressed the risk
of CDI as a function of both CDS-ID and age together.
The assumption of a linear relationship between con-
tinuous predictor variables and the log of the odds was
verified by visual inspection of plots of the log odds ver-
sus age and CDS-ID. For all models, the discriminatory
ability was assessed using the c-statistic and 95% confi-
dence intervals [19]. The c-statistic is a measure of the
area under the receiver-operator characteristic (ROC)
curve, which is a graphical representation of the sensitiv-
ity and specificity of outcome classification for all pos-
sible values of the predictor variable [20]. The c-statistic
represents the probability that the value for a predictor
variable will allow for accurate prediction of a patient
with the outcome versus a patient without the outcome
in a randomly chosen pair [20]. In practice, the c-
statistic can be conceptualized as the percent of time
that the model is able to accurately distinguish between
cases and non-cases based on the values of predictors
included in the model. For example, in a model with a
c-statistic of 0.60 applied to 100 random case/non-case
pairs, we would expect an accurate discrimination be-
tween the cases and non-cases in 60 of the 100 pairs, or
60%. Model discrimination was compared between
models using chi-square tests for differences between
c-statistics according to the methods for comparing the
areas under two correlated ROC curves suggested by
DeLong and colleagues [19]. The discrimination of
models was also compared to a c-statistic of 0.5, or the
equivalent of predicting outcome based on the flip of a
coin, using chi-square tests.

Model calibration

Calibration, which measures the fit of a particular model
to the data, was assessed using the Hosmer-Lemeshow
(HL) goodness-of-fit test [21]. In this test, patients are
divided into equal groups of predicted risk (typically
deciles) for the outcome of interest. The distribution of
observed cases is compared to the distribution of
expected cases based on the specified model. The null
hypothesis of the HL test is that there is no significant
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lack of model fit (e.g. no significant difference in the dis-
tribution of expected and observed cases); therefore a
P-value less than 0.05 is associated with a significant lack
of model fit. Increasing P-values (e.g., closer to 1) are
generally associated with better model fit [22]. Because
of the large sample size, the HL test is expected to be
sensitive to small departures in the distributions of ob-
served and expected cases. As such, both P-values and
HL graphs were used to interpret model calibration.

Confounder control

The potential ability of the CDS-ID, when used as a covar-
iate, to reduce the confounding effects of comorbidity was
assessed using the relationship between high-risk anti-
biotic exposure and CDI as an illustrative example. Four
separate logistic regression models were constructed. Un-
adjusted estimates of the association between high risk an-
tibiotics and CDI were obtained from a model containing
antibiotics as the only independent predictor. Additional
models were constructed by adding additional adjustment
variables: CDS-ID, Age, or both CDS-ID and age. Abso-
lute and relative (%) changes to the main exposure odds
ratio as compared to the unadjusted estimate were calcu-
lated. The performance of CDS-ID was compared to ad-
justment using the individual comorbid conditions
comprising the score with respect to discriminatory ability,
calibration, degree of confounding reduction, and preci-
sion of the main-effect estimates. Point estimates (e.g.
odds ratios and c-statistics) and precision were similar
across models (data not shown).

Results

Of the 10,154 hospitalizations available for analysis,
7,792 first hospitalizations were chosen from unique pa-
tients. Among these patients, there were 185 episodes of
CD], resulting in an observed incidence of approximately
2.4%. A comparison of the baseline clinical characteris-
tics of patients with and without CDI is shown in
Table 1. Overall, patients with CDI were older on admis-
sion (median 69.9 versus 59.1 years, Wilcoxon rank-sum
P < 0.01) and had a higher proportion of high risk anti-
biotic use (96.8% versus 90.3%, P < 0.01) as compared to
patients that did not go on to develop CDI. Case pa-
tients also had a greater degree of comorbidity as mea-
sured by the CDS-ID score (median 2.83 versus 1.83
points, P < 0.01) and by the frequency of individual co-
morbid conditions included in the score, with the excep-
tion of organ transplant (7.6 versus 6.2, p=0.44).

The discriminatory abilities of models to predict CDI
using age, CDS-ID, and both age and CDS-ID are shown
in Table 2 The model employing age alone for the pre-
diction of CDI risk resulted in a c-statistic of 0.609 (95%
confidence interval (CI) 0.570, 0.649). Use of the CDS-
ID score only represented a significant improvement
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Table 1 Comparison of clinical characteristics of patients
with and without Clostridium difficile Infection (CDI)

Characteristic CDI n (%) No CDI n (%) P
No. of Patients 185 7607

Age, y, median (IQR) 69.6 (25.9) 59.1 (30.6) <0.01
CDS-ID Score, median (IQR) 283 (1.57) 1.83 (3.21) <0.01
Cancer 12 (6.5) 168 (2.2) <0.01
Diabetes 65 (35.1) 1605 (21.1) <0.01
Kidney Disease 19 (10.3) 289 (3.8) <0.01
Peptic Ulcer Disease 143 (3.2) 4315 (96.8) <0.01
Respiratory lliness 48 (26.0) 1517 (20.0) 0.04
Organ Transplant 14 (7.6) 470 (6.2) 044
Any High Risk Antibiotics * 179 (96.8) 6868 (90.3) <0.01

Abbreviations: IQR=Interquartile Range, CDI=Clostridium difficile infection,
CDS-ID =Chronic Disease Score-Infectious Disease

2 Defined as any cephalosporin, carbapenem, fluoroquinolone, IV vancomycin,
or B-lactamase inhibitor combination and derived from observed

associations (ref).

over prediction using age only, yielding a c-statistic of
0.653 (95% CI 0.617, 0.689, chi-square P=0.04). Relative
to the model containing age only, the addition of CDS-
ID would result in accurate discrimination of an add-
itional 7 out of every 100 random pairs (c-statistic
0.681;95% CI 0.646, 0.716). Figure 1 shows ROC curves
constructed for models containing both CDS-ID and age
and age alone. All models performed significantly better
than random prediction (P<0.01 for all comparisons).

The Hosmer-Lemeshow goodness of fit test indicated
that model calibration was adequate for CDS-ID
(P=0.07). The model employing age in the prediction of
CDI had very good fit, with a P-value of 0.61. The distri-
butions of observed and expected cases across categories
of risk for CDS-ID and age are demonstrated in Figure 2,
panels (a) and (b), respectively. The combination of
CDS-ID and age resulted in a model calibration P-value
of 0.07. Figure 3 shows the calibration plot for this
model. Visual inspection of all three calibration plots re-
vealed no obvious departure of observed from expected
cases across risk groups for any of the models.

The potential for confounding reduction by CDS-ID
and age was assessed using the association between the
use of high versus low risk antibiotics and the risk of
CDI (Table 3). In univariate logistic regression, high risk
antibiotic use was associated with a three-fold increase
in risk of CDI as compared to the use of low risk antibi-
otics (OR 3.21, 95% CI: 1.42, 7.27, P=0.01). After adjust-
ment for CDS-ID alone and age alone, the estimates for
the main effect were reduced by 17% to 2.66 and by 20%
to 2.56, respectively. Simultaneous adjustment for both
CDS-ID and age resulted in the greatest reduction in the
main effect risk estimate to 2.30, as well as the greatest
precision, as measured by the width of the 95% CI
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Table 2 Comparison of discriminatory abilities of CDS-ID, age, and CDS-ID and age to predict Clostridium difficile

Infection (CDI)

Model ¢ Statistic 95% ClI Comparison to Age Alone Chi-square P
Age 0.609 0570, 0.649 -

CDS-ID 0.653 0.617, 0.689 0.04

CDS-ID + Age 0681 0.646, 0.716 <0.01

Abbreviations: CDI=Clostridium difficile infection, CDSID =Chronic Disease Score - Infectious Disease, CI=Confidence Interval.

(95% CI: 1.01, 5.23, P=0.04). The precision of the main
effect estimates was similar for the models adjusted for
CDS-ID only and age only (95% CI width 4.87 and 4.71,
respectively).

Discussion

The presence of underlying comorbidities has consist-
ently been implicated as a risk factor for the develop-
ment of CDI [1,23,24]. Therefore, the control of
potential confounding effects of comorbidities is import-
ant in studies of the etiology of CDI. Many such studies
are conducted in the setting of outbreak investigations,
resulting in small sample sizes and limited statistical
power to adjust for multiple covariates. Even in larger
studies, statistical power may be limited because of the
relative infrequency with which CDI occurs [16,23,25].
In these situations, it may be impractical to adjust for all
possible comorbid conditions as a set of binary predictor
variables, and the use of an aggregate risk score may be
preferable. Several scores have been developed to meas-
ure underlying comorbidity, but this has typically been
done for specific outcomes, such as in-hospital mortal-
ity, that may have limited generalizability in studies

<
l—' 7
'l'
q)_ | ~
[=] "
’ -~
P -~
2 94 -7
3 ° +”
g &
Q < -
0 s ’r
J
’r
o~
s+ r
S ’
)
S
(=} I I I !
0.0 0.2 04 0.6 038 1.0
1-Sensitivity
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where the outcome of interest is the development of
HAL

The CDS-ID score was developed as an adaptation of
the original Chronic Disease Score for the prediction of
VRE and MRSA infections [13]. Because of the overlap
in risk factors for most nosocomial infections, the CDS-
ID was considered generalizable to other infectious
agents, but the performance of the score has not been
verified specifically for use in studies of CDI. While the
development of a new comorbidity score using study-
specific weights would undoubtedly yield measures with
greater discriminatory ability and model fit, the valid-
ation of a single measure across HAI outcomes may still
be desirable for comparability across studies and for ease
of application. This study represents the first formal
evaluation of the performance of CDS-ID for the predic-
tion of CDI. In addition, there is some question as to
whether aggregate comorbidity scores contribute any
additional information to the prediction of outcomes
above that encompassed by age alone, which tends to be
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Figure 3 Calibration plot of the CDS-ID plus age as predictors
of Clostridium difficile Infection. (Solid line with circles — Expected
Distribution of Cases; Dashed line with squares — Observed
Distribution of Cases).

highly correlated with overall health status and degree of
underlying comorbidity [15]. Given the added complex-
ity of data collection and additional resources that may
be required to compute aggregate risk scores, we also
sought to verify that the CDS-ID represents an improve-
ment over age adjustment alone in terms of either pre-
diction, confounder control, or both for studies of CDL
We observed that the use of CDS-ID represented a
significant improvement over the discriminatory ability
of random prediction alone, with a c-statistic of 0.653
(95% CI: 0.617, 0.689, P<.01). Similarly, age was also sig-
nificantly better than random prediction (c-statistic
0.609, 95% CI: 0.570, 0.649, P<.01). While CDS-ID was a
better predictor of CDI than age alone, the combination
of these two predictor variables resulted in the best
discriminatory ability, with a c-statistic of 0.681. In pre-
dictive models, discriminatory abilities above 0.70 are
generally most desirable. However, comorbidities may
influence the risk of CDI less directly than factors such
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as antibiotic use and colonization pressure (i.e. exposure
to bacteria and spores) that are primary exposures in the
causal pathway. Thus, predictive models that do not
include these etiologic factors can be expected to have
lower discriminatory abilities than models that account
for variables with stronger causal associations. In addi-
tion, we found that CDS-ID performed as well or slightly
better in the prediction of CDI than VRE (c-statistic
0.64) or MRSA (c-statistic 0.57) in the original develop-
ment and validation samples [13].

Based on Hosmer-Lemeshow goodness-of-fit tests,
none of the fitted models showed a significant lack of
model fit. Models including CDS-ID had poorer fit than
the model that included age alone (P=0.07 versus
P=0.61, respectively). However, in HL tests, goodness-of
-fit of the models is dependent on P-value, which in turn
is influenced by sample size. Given the large number of
subjects used in this study, small deviations of the distri-
bution of observed cases from what is expected based
on the model influence the assessment of model fit, even
when these differences are not clinically relevant. There-
fore, we also assessed model fit based on calibration
plots. Visual inspection of the calibration plot for the
CDS-ID only model showed overall good agreement of
observed versus expected number of cases, with the lar-
gest discrepancy among individuals in the lowest sextile
of risk. There was good agreement across deciles of risk
for calibration plots for the other models as well. Over-
all, the models fit the data well.

In addition to their utility in risk stratification, aggre-
gate comorbidity scores may be used for confounder
control in studies with limited power due to small
sample sizes. In order to assess the potential for
confounding reduction, the association between the use
of high risk antibiotics and the development of CDI was
evaluated. Both age and comorbid conditions have been
demonstrated as independent risk factors for CDI both
in previous studies [5,26,27] and in our validation cohort
[16,28]. Age has been shown to be related to appropri-
ateness and quantity of antibiotic exposure [29,30], and
it is reasonable to assume that patients with greater
degree of underlying comorbidity, particularly those that
are related to immune function, may be more likely
to receive antibiotics compared to those with fewer

Table 3 Adjustment for Confounding Effects on the Association Between Antibiotic Exposure and the Risk of (CDI)

Model Main Exposure Odds Ratio 95% CI  Change From Unadjusted Absolute (%) c Statistic 95% Cl

High Risk Antibiotics 3.21 142,727 - 0532 0519, 0.546
High Risk Antibiotics + CDS-ID 2.66 117,604 —055 (17) 0.658 0.623, 0.694
High Risk Antibiotics + Age 256 1.13,584 —065 (20) 0621 0.582, 0.659
High Risk Antibiotics + CDS-ID + Age  2.30 101,523 —-091 (29) 0.686 0651, 0.720

Adjustment for Confounding Effects of Comorbidity and Age on the Association Between High Risk Antibiotic Exposure and the Risk of Clostridium difficile

Infection (CDI).

Abbreviations: OR= Odds Ratio, Cl=Confidence Interval, CDI=Clostridium difficile infection, CDS-ID =Chronic Disease Score-Infectious Disease.
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comorbid conditions. On crude analysis, we found that
high risk antibiotics were associated with a 3.2-fold in-
crease in risk of CDI. After taking into account the ef-
fects of age, that estimate was reduced to 2.6. A similar
reduction was observed after adjustment for CDS-ID.
Co-adjustment for both age and CDS-ID resulted in a
main effect estimate of 2.3, suggesting that there remains
at least some variability in the outcome related to co-
morbidity that cannot be adequately explained by vari-
ation in age alone. Given the lack of gold standard for
measuring true comorbidity, we were unable to assess to
what extent CDS-ID was able to accurately measure
these conditions. Similarly, we were unable to compare
the performance of other common comorbidity scores
in the prediction of CDI. However, our results indicate
that adjustment for age alone is probably insufficient
to account for confounding by underlying comorbid-
ity, at least within the context of the example illus-
trated here. Interestingly, the dichotomous measure of
high risk antibiotic use was near 0.50 for discrimin-
ation of CDL It is possible that this is due to the lack
of variability in the exposure, as more than 90% of
the cohort received some high risk antibiotic during
their hospitalization (data not shown). More detailed
exposure assessments may result in better discrimin-
atory abilities.

One of the primary limitations of the use of CDS-ID
in etiologic studies of risk factors for CDI is the inclu-
sion of PUD as one of the conditions. While still some-
what controversial, the evidence for an association
between the use of acid suppressive agents, particularly
proton pump inhibitors (PPI) and potentially histamine-
2 receptor blockers (H2 blockers), is mounting [31].
Acid suppression is a cornerstone of treatment for pep-
tic ulcer disease, and the presence of these agents would
be incorporated as an indicator of PUD in CDS-ID. In-
vestigators that wish to directly estimate the association
between PPI or H2 blockers and the risk of CDI may
not be able to do so because of the strong correlation
between the score and individual medication use. In sit-
uations in which control for potential confounding by
the use of acid suppressive agents is desired, the score
alone may be sufficient, although this has not been in-
vestigated thoroughly. We also used detection of C. diffi-
cile toxins A and B by EIA in diarrheal stool as the
method for case detection, which was the most common
diagnostic test for CDI at the time of the study but since
has been demonstrated to have sub-optimal sensitivity
[32]. Application of CDS-ID in studies with alternative
CDI testing algorithms such as polymerase chain reac-
tion (PCR) or colonoscopy should not negatively impact
the performance of the score, as the characteristics of
these diagnostic tests (i.e. sensitivity and specificity) are
unlikely to vary by CDS-ID score.
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Conclusion

Our analysis indicates that CDS-ID is a valid and useful
tool for the measurement of underlying comorbid condi-
tions in studies of the risk of nosocomial CDI. The use
of CDS-ID resulted in a significantly improved discrim-
inatory ability relative to age adjustment alone. Modeling
the risk of CDI as a function of both age and CDS-ID
resulted in the best discriminatory ability and the
greatest degree of confounder control. Studies that
examine risk factors for nosocomial CDI, particularly in
the setting of limited sample size, may benefit from the
use of CDS-ID to summarize risk of CDI associated with
the degree of underlying comorbidity.
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