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Abstract

Background: Airborne fungi play an important role in causing allergy and infections in susceptible people.
Identification of these fungi, based on morphological characteristics, is time-consuming, expertise-demanding, and
could be inaccurate.

Methods: We developed an oligonucleotide array that could accurately identify 21 important airborne fungi (13 genera)
that may cause adverse health problems. The method consisted of PCR amplification of the internal transcribed spacer
(ITS) regions, hybridization of the PCR products to a panel of oligonucleotide probes immobilized on a nylon membrane,
and detection of the hybridization signals with alkaline phosphatase-conjugated antibodies.

Results: A collection of 72 target and 66 nontarget reference strains were analyzed by the array. Both the
sensitivity and specificity of the array were 100%, and the detection limit was 10 pg of genomic DNA per assay.
Furthermore, 70 fungal isolates recovered from air samples were identified by the array and the identification
results were confirmed by sequencing of the ITS and D1/D2 domain of the large-subunit RNA gene. The sensitivity
and specificity of the array for identification of the air isolates was 100% (26/26) and 97.7% (43/44), respectively.

Conclusions: Identification of airborne fungi by the array was cheap and accurate. The current array may
contribute to decipher the relationship between airborne fungi and adverse health effect.

Background
Fungi are widely distributed in the natural environment.
Fungal spores can be easily dispersed into the air and
may cause serious health problems. Exposure to fungal
spores can cause a wide spectrum of allergenic reactions,
such as asthma, and infections in susceptible individuals
[1-4]. Asthma prevalence has considerably increased in
recent decades such that it is now one of the most com-
mon chronic disorders in the world [5-7]. Some severe
diseases, such as allergic bronchopulmonary aspergillosis
and fungal sinusitis, may be found in susceptible or
immunocompromised individuals through mold expo-
sure [8,9]. The predominant genera of airborne fungi
causing health concern are Alternaria, Aspergillus,
Cladosporium, and Penicillium [4].

In order to decipher the relationship between fungi and
potential fungal infection, it is imperative to establish
methods that can accurately identify airborne fungi to
the species level and the method could be easily followed.
Conventional methods for fungal identification are pri-
marily based on morphological and physiological tests
[10]. These tests often require several days or even weeks
and the results can be inconclusive or inaccurate [11].
Even for a mycologist, the identification of airborne fungi
to the species level can be challenging, due to the taxono-
mically high divergence of these microorganisms. In
recent years, numerous DNA-based methods have been
developed to identify a variety of medically important
fungi [12]. The rRNA genes have been extensively used
as the targets for molecular identification [12,13]. These
methods include DNA probes [14], PCR-restriction
enzyme analysis [15], real-time PCR [16], and DNA
sequencing [17,18]. PCR techniques are particularly pro-
mising because of their simplicity, sensitivity, and
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specificity. However, these methods can identify only one
or a limited number of species at a time.
A variety of DNA array methods, having the capacity to

simultaneously identify multiple targets, have been devel-
oped to identify pathogenic fungi [19-23,26,30] with high
sensitivity and specificity. In contrast, literatures using
the array platform to detect airborne fungi are very lim-
ited and so far only one study using nonspecific probes
was reported [24]. In our previous studies, oligonucleo-
tide probes designed from the internal transcribed spacer
(ITS) regions have been developed to identify a wide vari-
ety of pathogenic molds (19,26) and yeasts (30), including
some airborne species. The aim of this study was to
expand the probe panel to identify 21 airborne fungal
species (13 genera) that may cause health problems in
susceptible persons.

Methods
Fungal strains
A total of 73 target strains (strains we aimed to identify)
representing 21 species (13 genera) (Table 1) and 66 non-
target strains (66 species, additional file 1) were used in
this study. These strains were obtained from the Biore-
sources Collection and Research Center (BCRC, Hsinchu,
Taiwan), the American Type Culture Collection (ATCC,

Manassas, Virginia, USA), and Centraalbureau voor
Schimmelcultures (CBS, Utrecht, The Netherlands).

DNA extraction
Mycelia (approximately 0.5 × 0.5 cm) grown on Saubour-
aud dextrose agar were transferred into a 2-ml screw cap
tube (Azygen Sientific, Union City, California, USA)
containing 300 mg of zirconium/silica beads (0.5 mm in
diameter, Biospec Products, Bartlesville, Oklahoma, USA)
in 1 ml of sterilized saline. The mycelial suspension was
shaken in a cell disrupter (Mini-Beadbeater, Biospec Pro-
ducts) for 5 min at a speed of 4,200 rpm. An 0.1 ml ali-
quot of the disrupted cell suspension was transferred to a
1.5-ml centrifuge tube and centrifuged at 8,000 × g for
10 min. Fungal DNA in the supernatant was extracted by
a DNA extraction kit (Viogene, Taipei, Taiwan) following
the manufacturer’s instructions [19].

ITS amplification and sequencing
The fungus-specific universal primers ITS1 (5’-TCCGTAG
GTGAACCTGCGG-3’) and ITS5 (5’-GGAAGTAAAAGT
CGTAACAAGG-3’) were used as the forward primers
[25], while ITS4 (5’-TCCTCCGCTTAT TGATATGC-3’)
was used as the reverse primer to amplify the ITS region
[25]. PCR was performed in a total reaction volume of

Table 1 Fungal strains used for identification by the oligonucleotide array

Species Straina Total no. of strains

Acremoniun strictum BCRC 32290, BCRC 32239T 2

Alternaria alternata BCRC 32888, BCRC 30501, CBS 105.49 3

Aspergillus flavus BCRC 30006, BCRC 30007, BCRC 30008, BCRC 30009, BCRC 30165T 5

Aspergillus fumigatus BCRC 32149, BCRC 30502T, BCRC 33373, BCRC 33380, BCRC 33381 5

Aspergillus niger BCRC 320201, BCRC 30204, BCRC 31130T, BCRC 30507, BCRC 32720, BCRC 33046 6

Aspergillus versicolor BCRC 31488T, BCRC 31123, BCRC 32142, BCRC 30225, BCRC 31895 5

Aureobasidium pullulans BCRC 31981, BCRC 32064, BCRC 32065 3

Chaetomium cochlioides BCRC 31605, BCRC 30523, BCRC 31771 7

Chaetomium funicola CBS 973.73, CBS 378.77 2

Chaetomium globosum CBS 142.88, CBS 766.96 2

Cladosporium cladosporioides BCR 32925, BCRC 30812, BCRC 32887 3

Mucor racemosus BCRC 30186, BCRC 32586, BCRC 30896 3

Paecilomyces variotii BCRC 30562, CBS 112279, CBS 370.70 3

Penicillium brevicompactum BCRC 31258, BCRC 31259, BCRC 33336 3

Penicillium chrysogenum BCRC 30564T, BCRC 30563, BCRC 30568, BCRC 30569 4

Penicillium corylophilum BCRC 31555, BCRC 32015 , BCRC 32620 3

Rhizopus stolonifer BCRC 31135, BCRC 31142 , BCRC 31633 3

Scopulariopsis brevicaulis ATCC 7903, ATCC 62614, BCRC 31751 3

Scopulariopsis chartarum CBS 522.69, CBS 897.68, CBS 410.76 3

Stachybotrys chartarum BCRC 32551, BCRC 32552, BCRC 32554, BCRC 32818, BCRC32819, BCRC 32820 6

Trichoderma viride BCRC 32054, BCRC 3312 , BCRC 33458 3

Total strain 77
aATCC, American Type Culture Collection, Manassas, Virginia, USA; BCRC, Bioresources Collection and Research Center, Hsinchu, Taiwan, Republic of China; CBS,
Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.
TType strain.
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50 μl consisting of 10 mM Tris-HCl (pH 8.3), 0.08% Noni-
det P-40 (Sigma-Aldrich, St. Louis, Minnesota, USA),
50 mM KCl, 1.5 mM MgCl2, 0.8 mM deoxynucleoside tri-
phosphates (0.2 mM each), 1.2 U of Taq DNA polymerase,
0.7 μM (each) of the forward and reverse primers, and 1 to
5 ng of DNA template. PCR was carried out using the fol-
lowing conditions: initial denaturation at 94°C for 3 min;
35 cycles of denaturation (94°C, 1 min), annealing (60°C,
1 min), and extension (72°C, 1 min); and a final extension
step at 72°C for 7 min. PCR products were purified and
sequenced by using an ABI Prism 377 automated DNA
sequencer (Applied Biosystems, Taipei, Taiwan) with a
BigDye Terminator cycle sequencing kit (version 3.1;
Applied Biosystems).

Design of oligonucleotide probes
Species- or group-specific oligonucleotide probes (18- to
30-mers) were designed from the ITS 1 or ITS 2 regions
based on sequences in the GenBank database (Table 2)
or on sequences determined in this study. The positive
control probe was designed from a conserved region in
the 5.8S rRNA gene [26]. The designed probes were
checked for melting temperature, secondary structure,
and GC content by using the Vector NTI Advance 9
(Invitrogen, Carlsbad, California, USA), and checked for
potential cross-reactivity with other species in GenBank
by using the BLASTN program. A total of 25 probes,
including 11 previously described ones [19,26,30], were
used to fabricate the oligonucleotide array on nylon
membrane. Ten bases of thymine were added to the 3’
ends of probes that exhibited weak hybridization signals
after preliminary testing [27]. An irrelevant oligonucleo-
tide (16 bases) labelled with a digoxigenin molecule at
the 5’ end was used as a position marker on the array.

Fabrication of arrays
The array (0.8 × 0.7 cm) contained 72 dots (9 by 8 dots),
including 50 dots for species identification (duplicate
dots of each of the 25 fungal-specific probes), 5 dots for
negative control (probe code NC, tracking dye only),
2 dots for positive control (probe code PC), and 15 dots
for the position marker (probe code M) (Figure 1). The
oligonucleotide probes (10 μM) were drawn into wells of
96-well microtiter plates, and spotted onto positively
charged nylon membrane (Roche, Mannheim, Germany)
as described previously [28]. The layout of all probes on
the array is shown in Figure 1.

Array hybridization
The ITS region of a fungus was amplified by PCR using
the forward primers (ITS1 and ITS5) and reverse primer
(ITS4) as described in the previous section, with each pri-
mer being labelled with a digoxigenin molecule at the 5’

end. The reagents and procedures for prehybridization,
hybridization (55°C for 90 min), and color development
using enzyme-conjugated anti-digoxigenin antibodies
were previously described [28]. The hybridized spots
(400 μm in diameter) could be read by the naked eye.
A strain was identified as one of the species listed in
Table 1 when both the positive control probe and the
species-specific probe (or at least one of the multiple
probes designed for a species) were hybridized (Table 2).
The images of the hybridization pattern were captured by
a scanner (PowerLook 3000; UMAX, Taipei, Taiwan).

Isolation and identification of airborne fungi
Air samples were collected from three places (one hospi-
tal, one research laboratory, and one government office).
The QuickTake 30 BioStage Pump kit (SKC Inc., Eighty
Four, Pennsylvania, USA) was used to collect air samples.
Fungal spores were collected on malt extract agar and
Saubouraud dextrose agar for 3 min at a flow rate of 28.3
L/min. Spores trapped on agar plates were grown at 25°C
for 3-7 days. Seventy colonies grown on agar plates were
selected for identification by the array. The species
names of the fungi identified by the array were further
verified by sequencing of the ITS region and the D1/D2
domain of the large-subunit RNA gene; sequences in the
two regions were found to be highly specific for a fungal
species [29,30]. Species were identified by searching data-
bases using the BLAST sequence analysis tool in the
National Center for Biotechnology Information. If the
result of array hybridization was in accordance with that
of either ITS or D1/D2 domain sequencing, the identifi-
cation made by the array was considered to be correct.

Determination of detection limit
Detection limit was the lowest amount of fungal DNA
that could be detected by the array. Serial 10-fold dilu-
tions of DNAs of Aspergillus fumigatus BCRC 30502
and A. versicolor BCRC 31488 were used to determine
the detection limits.

Results
Probe design
Initially, about 100 probes (data not shown) were designed
to identify the 21 species listed in Table 1. Through exten-
sive screening, many probes cross-reacted with heterolo-
gous species or produced weak hybridization signals with
homologous species. Finally, 25 probes were selected for
fabrication of the array (Table 2); these probes included 11
oligonculeotides published in our previous studies
[19,26,30]. One or multiple probes were designed to iden-
tify a single species, depending on the availability of diver-
gent sequences in the ITS region (Table 2). For most
species, a single probe was enough to identify an individual

Hung et al. BMC Infectious Diseases 2011, 11:91
http://www.biomedcentral.com/1471-2334/11/91

Page 3 of 9



microorganism. But one probe (code Chcgf1) was used to
identify a group of three closely related species (Chaeoto-
mium cochlioides, C. globosum, and C. fumicola) due to
high interspecies similarities of the ITS sequences among
these species. Conversely, some fungi displayed high
intraspecies sequence divergence in the ITS regions and
hence multiple probes were constructed to identify a sin-
gle species. For example, two probes were used to identify
each of the following species: Mucor racemosus, Penicil-
lium corylophilum, Scopulariopsis chartarum, and

Stachybotrys chartarum, and three probes were synthe-
sized to identify Aureobasidium pullulans (Table 2).

Sensitivity and specificity of the array
A total of 139 reference strains, including 73 target and
66 nontarget strains, were analyzed by the array. The
hybridization patterns of different fungal species are
shown in Figure 2. Of the 73 target strains, 72 (98.6%)
were correctly identified to the species or group level by
the array, with one strain (Trichoderma viride BCRC

Table 2 Oligonucleotide probes used to identify airborne fungi

Microorganism Probe

Codea Sequence (5’-3’)b Length
(nt)

Tm (℃) Locationc GenBank
accession no.

Acremonium strictumd Acstr2-5 CTGCGTAGTAGCACAACCTCGCAtttttttttt 23 59.1 431-453 (2) AJ621771

Alternaria alternatae Alalt3 CGCACTCTCTATCAGCAAAGGTCTAGCATC 30 63.5 461-490 (2) AY625056

Aspergillus flavuse Asfla4 CGAACGCAAATCAATCTTTTTCCAGGT 27 63.1 512-538 (2) AY373848

Aspergillus fumigatuse Asfum2-
1

GCCAGCCGACACCCAACTTTATTTTTCTAAtttttttttt 30 65.4 213-242 (2) AY230140

Aspergillus nigere Asnig2 ACGTTTTCCAACCATTCTTTCCAGGT 26 60.9 517-542 (2) AY373852

Aspergillus versicolore Asver4 ACGTCTCCAACCATTTTCTTCAGGT 25 58.2 486-510 (2) AY830119

Aureobasidium pullulanse Aupul2 ATTTCTAACAACGCTCTTTGGGTCGGTACG 30 65.5 454-483 (2) AF121283

Aureobasidium pullulanse Aupul3 TCAAAGGAGAGGACTTCTGCCGACTGAAAC 30 66.2 456-485 (2) AY139395

Aureobasidium pullulanse Aupul4 GGCGTAGTAGAATTTATTCGAACGTCTGTC 30 60.7 428-457 (2) AY139395

Chaetomium cochliodes/C.
globosum/C. funicolae

Chcgf1 GGCCTCTCTGAGTCTTCTGTACTGAATAAG 30 58.8 157-186 (1) AJ279450

Cladosporium cladosporioides Ccla2-2 CGGGAGGCTACGCCGTAAAtttttttttt 19 57.4 470-488 (2) AY361994

Mucor racemosus Mrac2-1 GGGCCTCTCGATCTGTATAGATCTTtttttttttt 25 55.3 573-597 (2) AY625074

Mucor racemosus Mrac3-1 TAGATCTTGAAATCCCTGAAATTTACTtttttttttt 27 52.7 590-616 (2) AY625074

Paecilomyces variotiif Pavar2 CCGAAGACCCCTSGAACGCtttttttttt 19 59.0 155-173 (1) AY373941

Penicillium brevicompactum Pbre1-1 ACCCGCTTTGTAGGACTGCCCGtttttttttt 22 63.0 439-461 (2) AY484922

Penicillium chrysogenum Pchr1-1 TCAACCCAAATTTTTATCCAGGtttttttttt 22 52.6 482-503 (2) DQ674380

Penicillium corylophilum Pcor1-
2R

CGCGGGCCAGAGGGCAGAtttttttttttt 18 63.9 102-119 (1) AF034456

Penicillium corylophilum Pcor2-
2R

CGCGGGCCAGAGGGCAGAAGtttttttttttt 20 65.6 100-119 (1) AF033450

Rhizopus stolonifer Rsto4 AAAGGCGGTTAATGGTATCCAACAAATtttttttttt 27 60.0 246-272 (1) AB113023

Scopulariopsis chartarum Sccha1 TCTTCATACCCATTTGTGAACACTACCCtttttttttt 28 59.4 41-68 (1) AY625066

Sccha4-
1

AGTAAAGCACCTCGCATCGGGTCCtttttttttt 24 63.2 497-520 (2) AY625066

Scopulariopsis brevicaulise Scbre3-
1

TGCGTAGTAGATCCTACATCTCGCATCGtttttttttt 28 62.4 500-527 (2) AY625065

Stachybotrys chartarum Scha1-3 CAGTATTCTCTGAGTGGGAAACGCAAAtttttttttt 27 60.7 485-511 (2) AF081468

Stachybotrys chartarum Scha1-4 AGTATTCTCTGAGTGGTAAACGCAAAtttttttttt 26 54.8 157-181 (1) AY095976

Trichoderma viride Tvir2-1 AACCAAACTCTTTCTGTAGTCCCCTCtttttttttt 26 56.5 111-136 (1) AY380909

Positive controlg PC GCATCGATGAAGAACGCAGCttttttttt 20 55.7 200-219 EF134625
aOligonucleotide probes are arranged on the array as indicated in Figure 1.
bMultiple bases of thymine, indicated by “t”, were added to the 3’ end of the probe. The underlined nucleotide indicates a single mismatch base that was
intentionally incorporated into the probe to avoid cross-hybridization.
cThe location of probe is shown by the nucleotide number of either ITS 1 or ITS 2; the number (1 or 2) in parenthesis indicates the ITS region from which the
probe was designed.
dProbe modified from a previous study (19).
eProbes designed in a previous study (19).
fProbe designed in a previous study (26).
gThe positive control probe was designed from a conserved region of the 5.8S rRNA gene (30).
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32054) being not identified (only the positive control
was hybridized). Discrepancy analysis revealed that the
strain BCRC 32054 had an ITS 1 and ITS 2 sequence
similarity of 100% with Trichoderma harzianum, while
the corresponding sequence similarities were only 78.7%
and 87.2%, respectively, with a reference sequence of
Trichoderma viride in GenBank (accessing no. X93978).
It was obvious that Trichoderma viride BCRC 32054
was a misidentification of Trichoderma harzianum, a
nontarget species in this study. Therefore, the sensitivity
of the array was 100% (72/72). In addition, a collection
of 66 nontarget strains (66 species) were used for speci-
ficity testing of the array (additional file 1). No cross-
hybridization was observed for any strain analyzed and a
specificity of 100% (66/66) was obtained.

Detection limit of the array
Serial 10-fold dilutions of DNAs extracted from two
strains (Aspergillus fumigatus BCRC 30502 and A. versi-
color BCRC 31488) were used to determine the detec-
tion limits. For both strains, the detection limit of the
array was 10 pg genomic DNA per assay; this amount of
DNA was approximately equal to 270 cells (37 fg of
DNA per cell of Candida albicans) [13].

Identification of fungal strains isolated from air samples
The array was used to identify 70 fungal isolates recov-
ered from the air samples in three buildings including
one hospital (24 strains), one research laboratory (11
strains), and one office (35 strains). Among the 70
strains, 27 were identified to species level by the array,
and 43 strains were not identified (nontarget species).
The identified airborne fungi were Aspergillus fumigatus

and A. versicolor (from a hospital), A. niger and A. versi-
color (from a laboratory), and Alternaria alternata,
Aspergillus flavus, Cladosporium cladosporioides, and
Penicillium chrysogenum (from an office) (Table 3).
Among the 27 strains identified by hybridization, 26
were correctly identified, as revealed by their morpholo-
gical characteristics and sequencing of the ITS and ribo-
somal D1/D2 domains of the rRNA operons (Table 3).
A strain (no. 12) was misidentified as Acremonium stric-
tum by the array, since the ITS sequences demonstrated
that the strain was Acremonium implicatum, a nontarget
species. The remaining 43 non-identified strains from
air samples belonged to nontarget species, as evidenced
by their ITS and D1/D2 sequences (additional file 2).
Some nontarget strains were only identified to the genus
level by DNA sequencing since there were no corre-
sponding ITS or D1/D2 sequence entries in the public
database. Based on these results, the sensitivity and spe-
cificity of the array for identification of airborne fungi
were 100% (26/26) and 97.7% (43/44), respectively.
Among the 70 isolates recovered from air samples, 26
(37.1%) have potentials to cause allergy or adverse
health problems in susceptible individuals.

Discussion
In this study, an oligonucleotide array was developed to
identify 21 species of airborne fungi that are of health
concern (Table 1). High sensitivity and specificity of the
array were demonstrated by testing a collection of 138
reference strains and 70 isolates from air samples. Com-
paring with glass chip, the current membrane array is
relatively simple, time-saving, and the test cost was
quite low. In addition, only minimal instrumentation

Figure 1 Layout of oligonucleotide probes on the array (0.8 × 0.7 cm, 9 by 8 dots). The probe “PC” was a positive control and the probe
“NC” was a negative control (tracking dye only). The probe “M”, a position marker, was an irrelevant probe labeled with a digoxigenin molecule
at the 5’ end. The corresponding species names and sequences of all probes are listed in Table 2. All probes used for fungal identification were
spotted on the array in duplicate.
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(a shaker and an incubator) is required for hybridization.
The whole procedure for fungal detection by the array
can be finished within a working day (8 h), starting
from isolated colonies. The prominent feature of the
current method is the use of a standardized protocol
encompassing DNA extraction, ITS amplification, and

membrane hybridization. The examinations of fungal
reproductive structures, which are essential for classical
identification, are not required by the present method.
In this study, one or multiple probes were designed to

identify a single species, depending on the availability of
divergent sequences in the ITS region (Table 2). The

Figure 2 Hybridization patterns of 21 species of fungi on the array. The corresponding probes hybridized on the array are indicated in
Figure 1, and the corresponding sequences of the hybridized probes are shown in Table 2. All probes used for fungal identification were
spotted on the array in duplicate. The last two panels shows the simultaneous hybridization of two (Acremonium strictum and Stachybotrys
chartarum) and three species (Scopulariopsis chartarum, Stachybotrys chartarum, and Trichoderma viride), respectively, on a single array.
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advantage of using multiple probes is the increased cov-
erage of different strains of a species, but the disadvan-
tage is the potential decrease of specificity due to the
unpredictable cross-hybridizations caused by other irre-
levant fungal species. The Tm (melting temperature)
values of probes used in this study ranged from 52.6 to
66.2°C, with some probes had Tm lower than the hybri-
dization temperature (55°C) (Table 2). However, clear
signals were obtained for all target strains tested (Figure
2). Volokhov et al. [31] also reported the successful use
of probes having Tm values lower than the hybridization
temperature for bacterial identification. The addition of
several thymine bases to the end of a probe (Table 2)
had the benefit of reducing steric hindrance between
target DNA and the probe immobilized on a solid sup-
port [27]
In a previous study, an array targeting the 18S rRNA

gene was developed to identify airborne fungi [24].
Since the 18S rRNA genes are highly conserved in

closely related species, therefore species identification
was based on hybridization patterns involving a combi-
nation of multiple probes rather than on species-specific
probes [24]. The advantage of the current study is that
all species were discretely identified by specific probes
and the reading of results is very straightforward. The
successful design of different probes was based on the
known ITS sequences (Table 2), and multiple sequence
alignment (interspecies and intraspecies) played an
important role in finding out the regions that could be
utilized for probe design. The present array is a power-
ful tool for the identification of important airborne
fungi that may cause health problems in susceptible
individuals. The array has the potential to be continually
extended by including more probes, without significant
increase of the cost or complexity. The current method
permits a shorter time to achieve results as well as the
correct identification of morphologically indistinguish-
able species.

Table 3 Identification of fungi isolated from indoor air by the array and by sequence analysis of the ITS and D1/D2
domain

Strain no.a Species identification by

Array hybridization ITS sequence (%)a D1/D2 sequence (%)a Best match

1 Cladosporium cladosporioides Cladosporium cladosporioides (99.4) Cladosporium cladosporioides (99.6) Cladosporium cladosporioides

3 Aspergillus versicolor Aspergillus versicolor (100) Aspergillus versicolor (99.0) Aspergillus versicolor

5 Aspergillus niger Aspergillus niger (100) Aspergillus niger (100) Aspergillus niger

12 Acremonium strictumb Acremonium implicatum (100) Acremonium sp. (97.8) Acremonium implicatum

13 Cladosporium cladosporioides Cladosporium cladosporioides (100) Cladosporium cladosporioides (100) Cladosporium cladosporioides

28 Alternaria alternata Alternaria alternata (100) Alternaria alternata (98.6) Alternaria alternata

33 Aureobasidium pullulans Aureobasidium pullulans (100) Aureobasidium pullulans (98.2) Aureobasidium pullulans

35 Aspergillus flavus Aspergillus flavus (100) Aspergillus flavus (100) Aspergillus flavus

38 Aspergillus flavus Aspergillus flavus (99.8) Aspergillus flavus (99.8) Aspergillus flavus

41 Cladosporium cladosporioides Cladosporium cladosporioides (100) Cladosporium cladosporioides (99.6) Cladosporium cladosporioides

42 Cladosporium cladosporioides Cladosporium cladosporioides (99.8) Cladosporium cladosporioides (99.8) Cladosporium cladosporioides

43 Cladosporium cladosporioides Cladosporium cladosporioides (100) Cladosporium cladosporioides (99.8) Cladosporium cladosporioides

44 Cladosporium cladosporioides Cladosporium cladosporioides (100) Cladosporium cladosporioides (100) Cladosporium cladosporioides

45 Cladosporium cladosporioides Cladosporium cladosporioides (100) Cladosporium cladosporioides (99.6) Cladosporium cladosporioides

47 Cladosporium cladosporioides Cladosporium cladosporioides (100) Cladosporium cladosporioides (99.6) Cladosporium cladosporioides

48 Cladosporium cladosporioides Cladosporium cladosporioides (100) Cladosporium cladosporioides (99.6) Cladosporium cladosporioides

49 Aspergillus versicolor Aspergillus versicolor (99.8) Aspergillus versicolor (99.3) Aspergillus versicolor

50 Aspergillus versicolor Aspergillus versicolor (100) Aspergillus versicolor (99.3) Aspergillus versicolor

52 Aspergillus versicolor Aspergillus versicolor (99.8) Aspergillus versicolor (99.1) Aspergillus versicolor

55 Aspergillus versicolor Aspergillus versicolor (100) Aspergillus versicolor (99.8) Aspergillus versicolor

56 Aspergillus versicolor Aspergillus versicolor (100) Aspergillus versicolor (98.6) Aspergillus versicolor

58 Aspergillus versicolor Aspergillus versicolor (100) Aspergillus versicolor (99.1) Aspergillus versicolor

59 Aspergillus versicolor Aspergillus versicolor (100) Aspergillus versicolor (99.3) Aspergillus versicolor

60 Aspergillus versicolor Aspergillus versicolor (100) Aspergillus versicolor (99.1) Aspergillus versicolor

64 Aspergillus niger Aspergillus niger (99.8) Aspergillus niger (99.1) Aspergillus niger

67 Aspergillus niger Aspergillus niger (99.8) Aspergillus niger (99.6) Aspergillus niger

68 Aspergillus niger Aspergillus niger (99.8) Aspergillus niger (100) Aspergillus niger
aValues in parentheses are percentages of sequence similarities of the test isolates with the best-scoring sequences in the GenBank database.
bThe strain was misidentified by array hybridization.
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Furthermore, the array was able to identify multiple fun-
gal species at the same time as demonstrated in Figure 2
(the last two arrays). The DNAs of colonies from two
(Acremonium strictum and Stachybotrys chartarum) or
three species (Scopulariopsis chartarum, Stachybotrys char-
tarum, and Trichoderma viride) on agar plates were
extracted in a tube, amplified by PCR, and hybridized to an
array. All individual species were simultaneously identified.
Furthermore, we also tried to directly detect fungi by trap-
ping airborne spores in a buffer, followed by centrifugation,
DNA extraction, and array hybridization. However, com-
paring with culture, the direct method was less sensitive
and this might be due to the limited numbers of spores
collected (data not shown). It is anticipated that by improv-
ing the sampling method, DNA extraction efficiency, and
using nested PCR [26], the current array may have a poten-
tial to directly detect airborne fungi without an initial culti-
vation step. A possible method would be that PCR can be
directly performed on the collected fungal spores, omitting
the DNA extraction step that may lead to a significant loss
of DNA for a very small sample. However, further investi-
gation is needed to verify this hypothesis.

Conclusions
Identification of airborne fungi by the array is highly
reliable and accurate. The method can be used as an
effective alternative to the conventional identification
methods. The current array can greatly contribute to
decipher the relationship between airborne fungi and
adverse health effects.

Additional material

Additional file 1: Additional Table 1: Nontarget fungi used for
specificity testing of the array. 66 strains of nontarget fungi used to
test the specificity of the array developed in this study

Additional file 2: Additional Table 2: Fungal strains not identified
by the array and identification of these strains by sequencing of
the ITS and D1/D2 domain. Identification of 44 air fungal isolates not
identified by the array by sequencing of the ITS and D1/D2 domain
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