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Abstract

Background: Controlling airborne contamination is of major importance in burn units because of the high
susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the
infection risk. In particular the required elevated temperatures in the patient room can create thermal convection
flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize
the design of an intensive care room intended to host severely burned patients, we have relied on a
computational fluid dynamic methodology (CFD).

Methods: The study was carried out in 4 steps: i) patient room design, i) CFD simulations of patient room design
to model air flows throughout the patient room, adjacent anterooms and the corridor, iii) construction of a
prototype room and subsequent experimental studies to characterize its performance iv) qualitative comparison of
the tendencies between CFD prediction and experimental results. The Electricité De France (EDF) open-source
software Code_Saturne® (http://www.code-saturne.org) was used and CFD simulations were conducted with an
hexahedral mesh containing about 300 000 computational cells. The computational domain included the
treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol
particles followed by time-resolved particle counting were conducted in the prototype room for comparison with
the CFD observations.

Results: We found that thermal convection can create contaminated zones near the ceiling of the room, which
can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena
agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore
sizes) can be influenced by these thermally induced flows. When the temperature difference between rooms was
7°C, a significant contamination transfer was observed to enter into the positive pressure room when the access
door was opened, while 2°C had little effect. Based on these findings the constructed burn unit was outfitted with
supplemental air exhaust ducts over the doors to compensate for the thermal convective flows.

Conclusions: CFD simulations proved to be a particularly useful tool for the design and optimization of a burn
unit treatment room. Our results, which have been confirmed qualitatively by experimental investigation, stressed
that airborne transfer of microbial size particles via thermal convection flows are able to bypass the protective
overpressure in the patient room, which can represent a potential risk of cross contamination between rooms in
protected environments.
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Background

Infections in burn patients are a major cause of morbid-
ity and mortality due to cumulative risk factors such as
the burn injury itself, the immunodeficiency related to
extended burn wounds, aggressive therapy and pro-
longed hospitalization. Microorganisms that cause these
infections include bacteria, fungi and viruses [1,2] and
are commonly found in the patient’s own endogenous
flora, but can also originate from exogenous sources and
from health care personnel. Noteworthy are Acitenobac-
ter, Pseudomonas and resistant Staphyloccocus aureus
which have been responsible for outbreaks in burn units
[3,4]. Modes of transmission to the patient include con-
tact, droplet and airborne spread [1,4]. Moreover, envir-
onmental conditions in these units call for elevated
temperatures (>30°C) and humidity levels (>50% RH)
which could facilitate microbial growth and environ-
mental contamination.

Although the incidence of burn wound infections has
declined in recent years, infection rates remain high in
patients with burns that exceed 30% of the total body
surface area [4]. Preventing direct transmission of infec-
tion in burn patients relies on strict application of disin-
fection and sterilization guidelines. The objective is to
both prevent any microbial entry into the room, and
simultaneously avoid any microbial diffusion from exit-
ing and reaching adjacent rooms. This is particularly
important for burn patients because of the high exposed
surface area they have in contact with room air and
their high propensity to endogenous acquired infections.

Infection risk is also influenced by the design of burn
unit rooms, [5] and it has been shown that the use of
single bed isolation [6,7], pre-emptive barrier precau-
tions [8] and laminar airflow isolation [9] can be effec-
tive protection measures to prevent cross transmission
and outbreaks [5]. However, basic knowledge of room
design parameters is lacking and must take into account
the unique environmental factors that these locations
require (e.g. elevated temperature and humidity). In par-
ticular, thermo-convective air flows that can transport
airborne contaminates from adjacent rooms and
throughout the unit need to be considered. Thus, we
have used Computational Fluid Dynamic (CFD), which
incorporate thermal sources and the opening and clos-
ing of room access doors, as a tool for optimizing the
design of an intensive care room for severely burned
patients [10]. Based on these simulations, a prototype
room was constructed and experimental control mea-
surements were carried out and used for validation and
direct comparison with the CFD predictions.

Methods
The initial room design was made using knowledge
acquired from the medical staff and hospital engineering
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department, taking into account that such rooms will be
used for intensive care, complex dressing, showering
and surgical treatment of burn patients, and that the
patient’s stay can last from up to 2 weeks to several
months for the most severe cases.

The basic room layout that emerged and was subse-
quently used for CFD simulations included a central
large room under positive pressure (+20 Pa) for patient
treatment, with two anterooms for entry and exit, both
maintained at negative pressure (-15 Pa) relative to the
adjacent corridor (0 Pa) (Figure 1). This overall config-
uration is meant to always channel air into the ante-
rooms when transitioning between the patient room or
the corridor, and corresponds to air distribution pat-
terns in accordance with recommendations from the
French standard NF S90351 for very high risk areas.
Inlet air originates from a central octagonal ceiling ple-
num that has a diffusion array of 9 m* and 70 cm rigid
Plexiglas curtains around its perimeter to channel air
downward into the room from the ceiling. Prescribed
airflow velocities to the treatment room were targeted at
0.25 m/s, which resulted in 90 air changes per hour
(ACH) in the room (8100 m>/h). Inlet air temperature
was 32°C. Two exhaust ducts are located in each corner
of the room at 0.15 and 1.4 meters above the floor. The
anterooms are provided with filtered air at 25 ACH
(648 m®/hr), and maintained at 25°C, with sliding access
doors leading to the treatment room and corridor. Air
exhaust grilles are located on the ceiling near the center
of each anteroom and air in the corridor was kept
between 25-27°C.

Computational Fluid Dynamic simulations (CFD)

CFD analysis of the initial room design was performed
using the Electricité De France (EDF) software Code_Sa-
turne® [11]. The software is based on a Eulerian
unstructured co-located finite volume approach that
solves incompressible Navier-Stokes equations for
meshes with cells of any shape (tetrahedral, hexahedral,
prismatic, pyramidal, polyhedral...). The meshes can be
grid structured and non conforming. The predictor-
corrector method is used for pressure velocity coupling
(SIMPLEC algorithm). The transport equation that takes
into account the temperature is then solved with an
updated velocity. The code does not use by default a
Boussinesq approximation but a variable density with a
conservation of the mass flow (the time derivative of the
density is neglected in the continuity equation at low
Mach numbers).

The turbulence model used is a standard k-&¢ model.
The buoyancy forces, which depend only on the tem-
perature, are thus taken into account as an explicit
source term in the momentum equations via the turbu-
lent kinetic energy and turbulent dissipation equations.
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Figure 1 Patient room and anteroom layout. Top view of intensive care room for severely burned patients (size L5.95 x W4.3 x H29 m) and

A second moment closure that takes into account aniso-
tropy effects of turbulence and in particular of buoyancy
production would have been more appropriate but has not
been used herein due to a lack of CPU time. Moreover,
the present two equations model seems to be sufficient to
obtain satisfactory qualitative results (see comparison with
experimental results). Due to the relative simplicity of the
turbulence model used for the flow dynamics, the turbu-
lent heat fluxes are modelled using a Simple Gradient Dif-
fusion Hypothesis (SGDH). The turbulent Prandtl number
is taken equal to 1. Table 1 summarizes the boundary con-
ditions used in the present work. These conditions are
standard in CFD computations and no particular treat-
ment has been introduced in the present study.

A passive scalar is used to qualitatively follow particles
[12]. Additional post-processing is carried out using

trajectories to predict high particle density locations. In the
case of passive scalar transport, the source (discretized
surfaces) is considered as a Dirichlet condition. For post-
processing with particles that follow the streamlines, a
given number of particles are emitted from the source.

No deposition and re-suspension is taken into account
at the wall with both methods.

The mesh consists of about 300,000 hexahedral cells,
which represents a very high quality for such CFD com-
putations. No grid sensitivity study has been carried out.
Using our experience from previous CFD computations,
the present refinement is a priori not sufficient for a
perfect convergence of the results but appropriate to
have good qualitative results. The computational domain
covers the central treatment room and the two ante-
rooms including equipment, with eight staff members

Table 1 Standard Boundary conditions used for the CFD simulations

Variables Inlet Outlet Wall
Velocity Dirichlet Homogeneous Standard logarithmic Wall Function
Neuman
Pressure Homogeneous Neuman Free outlet Homogeneous Neuman
Turbulent Dirichlet based on the integral Homogeneous Standard Wall Function
variables lengthscale Neuman
Temperature Dirichlet Homogeneous Standard Wall Function with Dirichlet or Neumann boundary

Neuman

conditions
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and one patient located in the treatment room. Thermal
sources in the simulation included 70 W for the patient
considered at rest, 135 W for each of the standing and
active eight staff members, 200 W for both ceiling
lamps, and 965 W for the bedpan washer in the exit
anteroom. Both the steady-state condition (RANS),
when all doors are closed, and the transient regime
(URANS), with either the entry or exit anteroom room
door open, were simulated to track transportation of air-
borne contaminates.

Prototype burn unit

A prototype burn treatment unit, which closely followed
the initial room design used for CFD simulations, was
constructed at St-Louis Hospital, Paris, France. Due to
architectural constraints, the actual anterooms were
slightly smaller and three exhaust grilles located at 0.15,
1.0 and 1.8 meters above the floor in the corners of the
central treatment room were used instead of two. All
other air supply and exhaust configurations corresponded
to those of the initial room design. Supply air was treated
by state-of-the-art HEPA-MD units, supplied by the
company AirInSpace S.A.S., Montigny-le-Bretonneux,
France, which were installed in the air distribution venti-
lation system. These units ensured HEPA-grade filtration
and biological decontamination of the air supplied to the
central treatment room. The air-flow, room pressures
and temperatures were all maintained in accordance with
the initial room design criteria.

The central room was equipped with an operating
table and suspended overhead operating lights. Six man-
nequins equipped with 100 W lamps were used to simu-
late surgical staff in the central room. 200 W and 500
W convector heaters were also placed in the room to
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further simulate heat fluxes arising from diverse medical
equipment.

Measurements within the prototype burn unit
Time-series measurements of airborne particle concen-
trations in the treatment and anterooms were used to
experimentally validate the simulated predictions of how
airborne particles are transported throughout the proto-
type burn unit. In order to match with the CFD passive
scalar particulate transportation model used, a dry inert
powder having a particle size range from 0.5 to 20 pum,
was aerosolized in the treatment room to mimic air-
borne contamination [12] The powder was injected into
the air using a dust generator (SAG410, Topas) at differ-
ent locations so as to trace particle movements in var-
ious areas throughout the rooms. Measurements of the
airborne particle concentration were made using a
6-channel light-scattering particle counter (Climet,
CI-450t) with readings covering the particulate sizes of
the dry inert powder.

Results

CFD simulations

The first series of simulations performed were designed
to investigate the transport of patient-generated contam-
ination in a fully staffed and equipped treatment room
under realistic conditions. A CFD snap-shot from these
simulations, corresponding to steady-state operation of
the treatment room with continuous generation of air-
borne particulate matter from the patient body surface
in the center of the room, is portrayed in Figure 2. The
colors in the figure represent the fraction of source con-
tamination, with highest concentrations in red (107)
and lowest in blue (0.0). High concentration “hot spots”

corridor anteroom

Figure 2 CFD simulations. CFD snap-shot of the treatment room, anteroom and corridor under standard operating conditions with source
contamination arising from the patient table. Colors represent the fraction of source contamination, with highest concentrations in red (107
and lowest in blue (0.0). Dotted-line circles indicate zones of high airborne contamination.
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are identified in the figure by the dotted-line circles
inserted over the patient’s bed (source) and in the upper
most portion of the room (accumulation). The figure
also demonstrates that the contamination is well con-
tained in the treatment room with only very slight
amounts migrating into the anteroom and no detectable
contamination in the corridor. Once the source contam-
ination was turned off, 99% of the room contamination
was evacuated within one minute. However, it is impor-
tant to note that a small portion of the contamination
entrained by heat convection currents into the upper
part of the room between the air diffusion panels and
room walls, lingered throughout the entire duration of
the simulation. The dynamic representation of air-flows
in the patient room shows that this accumulation was
maintained by circulation eddies and that the curtain of
the ceiling plenum prevented re-entry of contaminates
into the patient zone (Additional file 1)

Additional simulations were carried out to understand
the transport of airborne contamination when the sliding
door between the treatment room and an anteroom is
opened. Two important cases are demonstrated in Figure
3, corresponding to imposing a large and small tempera-
ture difference between the treatment room and the ante-
rooms. In Figure 3a the treatment room is maintained at
32°C while the anteroom is at 25°C, (AT = 7°C) while for
Figure 3b the anteroom is elevated to 30°C, (AT = 2°C).
The simulations clearly predict a strong influence of the
temperature gradient between the rooms. Large tempera-
ture differences (e.g. 7°C) create thermal convection, which
expels warm air into the adjacent anteroom near the top
of the door entrance, while cooler air from the anteroom
is drawn into the treatment room at floor level. When the
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temperature gradient is reduced to 2°C under the same air
flow conditions, the thermal convection effects become
negligible (Figure 3b). The full CFD simulation of the
entry sequence through the anteroom and into the patient
room is shown on Movie 2 (Additional file 2). A mild con-
vection effect is observed during access from the corridor
to the entry anteroom due to the 2°C temperature differ-
ence between the two rooms. However, this only resulted
in a negligible transfer of airborne contaminates. Subse-
quently, an intense convective effect is witnessed upon
entry into the patient room, resulting in an important
exchange of contaminates between the two rooms. In the
exit sequence (Additional file 3) the thermal convection
effect between the patient room and the anteroom was
limited and resulted in a mild and transient contamination
of the exit anteroom. As for the entry sequence, a mild
thermal convection effect was observed between the ante-
room and the corridor, but had no consequence on the
corridor contamination.

Qualitative validation of CFD findings in the prototype
room
Experimental measurements were carried out to evaluate
the CFD predictions and determine if the effects of heat
convection currents and thermal transport influence air-
borne particulate contamination. For these studies the
constructed treatment room was used with the ventila-
tion system, mannequins, lights and artificial equipment
all in operation so as to simulate CFD conditions and to
provide a realistic model scenario.

To test for overhead accumulation of contaminate as
indicated by the simulation results in Figure 2, the aero-
sol generator was placed on top of the patient’s table

) Room (32°C, +20 Pa

Figure 3 CFD simulation of thermal convective flows. CFD images demonstrating the thermal convective flows between rooms that have
different temperatures. Arrows indicate direction and the relative air speed by their length. Colors correspond to temperature, red being the
highest and blue the lowest. Large dark arrows are superimposed on the flow field lines to help visualize the overall air flows. Figure 3a
simulates a temperature difference of 7°C while 3b one of 2°C.
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and airborne concentration levels of particles greater
than 1 pm were monitored at 30 cm from the floor and
30 cm from the ceiling, both just outside of the peri-
meter of the overhead air-distribution system. Simulta-
neous measurements were taken at one-minute intervals
throughout the contamination period and after the aero-
sol generator was turned off. Figure 4a provides a time-
series plot that summarizes the results for particles in
the 1 um-5 pm size range. The contamination period
lasted approximately ten minutes and is indicated by the
hatched lines in the figure. During this period a steady
rise in airborne particle levels is observed which reaches
a high plateau level after three minutes. Once the gen-
erator is turned off, the airborne particle concentrations
follow a 4-log decrease in ten minutes. Throughout the
entire period the upper-room levels exceed the lower
levels by approximately one log.

To study the thermal convection of particles between
rooms, the constructed burn unit was placed in opera-
tion and the airborne particle levels were monitored
while the sliding room access doors were opened and
closed (Figure 4b). Figure 4b presents the results for 1
pum-5 pum particle levels near the door in the upper por-
tion of the entry anteroom at 25°C (-15 Pa) (filled
squares) and in the lower portion of the treatment room
at 32°C (+20 Pa) (open circles). The particle generator
was placed in the treatment room and ran continuously
for ten minutes (hatched area). Concentration measure-
ments were taken simultaneously at one-minute inter-
vals. Arrows in the figure indicate the times at which
the sliding door was opened for a 10 second period. It
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can clearly be seen that a spike in the airborne contami-
nation level inside the treatment room is witnessed after
each door opening and that the relative importance of
this spike is increased when the overall contamination is
lower. In contrast to this, comparing door openings
between the anteroom at 25°C (-15 Pa) and corridor at
27°C (0 Pa) with particle contamination taking place
inside the anteroom, very little contaminate transfer is
witnessed during the contamination period with no
detectable transfer afterwards (data not shown). Note-
worthy, similar trends of concentration ratios were
observed for smaller particle sizes (0.5 pm-1 pm) but
with lower quantitative impact of the artificial contami-
nation period than the data presented (data not shown).
Concentrations of particles for sizes above 5 pm were
negligible even during the artificial contamination period
(data not shown).

Discussion

CED is a powerful analytical tool for understanding
flows and transport of microorganisms in protected
environments and hospital settings [13,14]. It has
already been used for improving the control of airborne
particles in operating theatres showing that room geo-
metry, airflow rates, air velocity profiles, distribution of
heat sources and operating lights were determinant for
the containment of infection [15,16]. However, to our
knowledge, CFD has been rarely used for assisting the
design of burn units [17]. Moreover, the majority of
work has focused on pressure-driven air flows, and not
heat-induced motion and its consequences. This later
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Figure 4 Experimental validation of CFD findings. Sequential particle measurement at 1 min interval during and after spiking with inert
particles (dashed area). 4a: spiking the operating table, showing accumulation of particle in the upper part of the room (30 cm from the ceiling,
black circles) compared to the lower part (30 cm from the floor, open circles). 4b: spiking the entry anteroom, showing transfer of particles from
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Beauchéne et al. BMC Infectious Diseases 2011, 11:58
http://www.biomedcentral.com/1471-2334/11/58

point is particularly relevant to burn units due to their
unique environmental conditions and high risk of
patient infection [1,4], which has served as the stimulus
for us to use CFD analysis in the design of our proto-
type burn unit and to investigate several scenarios. To
that end we have found that temperature gradients can
play an important role in the distribution of airborne
contaminates and careful analysis of air flows should
take these into account. As seen in CFD simulations
and particle tracer experiments, heat convective currents
can trap suspended particles in so-called “hot spots”. In
itself the presence of these spots represent a contami-
nate source risk, and in addition to this the problem can
be aggravated, leading to further risk through transport
to adjacent rooms due to differential room temperatures
that create thermal convective flows. This finding led us
to take corrective engineering measures that called for
enhanced exhaust flows in the upper section of the
treatment room near the access doors.

Indeed, the risk of occasional small back flow cre-
ated when doors are open simultaneously or when
there is a high difference of temperature across an
open door has already been considered in the design
of ventilation system in healthcare facilities [18]. Here
we provide a CFD evidence of this phenomenon and
show its consequences in terms of real particle trans-
fer between pressurized rooms for small particle sizes
(<5 pm). We note that, due to the lack of sufficient
concentrations of particles above 5 pm in our experi-
ments, we are unable to make conclusions within this
size range.

We have found that when a temperature difference of 7°C
existed between the rooms, inter-room thermal convective
flows predicted by CFD and qualitatively verified experimen-
tally were important enough to transport airborne contami-
nation into the positive pressure treatment room when the
access door was opened, despite an initial 35 Pa pressure dif-
ference between the rooms when the doors are closed. How-
ever, with only a 2°C temperature difference we observed
only negligible effects even when lower initial pressure dif-
ferences were opposing the thermal convection (15 Pa).

These observations are consistent with recent work by
Dong et al. [19], who report a similar phenomenon
using tracer gas measurements to confirm their predic-
tions and assumed that particle transport could ensue.
The present CFD predictions are complimentary to
those of Dong et al. and our experimental observations
performed with 0.5-20 microns size particles support
that transport of bacteria and fungal spores can arise
from these convective flows.

Conclusions
In conclusion, CFD simulations proved to be particularly
useful for the design and optimization of the burn unit
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treatment room constructed at St-Louis Hospital. Our
results showed the importance of airborne particle
transport via thermal convection flows generated by
thermal differences between rooms. Such phenomenon
has potential consequences in terms of prevention of
infections since we showed experimentally that particles
with sizes in the range of bacteria or fungal spores were
carried by the thermal flow and could bypass the protec-
tive overpressure in the patient room. Based on these
data, the design of the ventilation system, the choice of
room temperatures was amended and health care work-
ers practices were adapted to prevent particle carryover.
Although CFD simulation of particle transport has some
limitations as a surrogate for microbial behaviour in the
environment, we estimate that such phenomenon and
pressure bypass is likely to occur in any pressurized
room, ward or laboratory and should be considered as a
risk of microbial airborne transmission.

Additional material

Additional file 1: Moviel - patient room. Dynamic representation of
air-flows in the patient room with source contamination arising from the
patient table. Colors represent the fraction of source contamination, with
highest concentrations in red and lowest in blue. A contamination
accumulation is entrained by heat convection currents into the upper
part of the room between the air diffusion panels and room walls.
(mpeg2 movie sequence)

Additional file 2: Movie2 - entry sequence. CFD simulation of the
sequential entry into the patient room through the anteroom, showing a
“thermal switch” between patient room and anteroom. When the door is
open, (T = 1065s-1070s), warm air (32°C) is aspirated into the adjacent
anteroom near the top of the door entrance, while cooler air (25°C) from
the anteroom is drawn into the patient room at floor level. (mpeg2
movie sequence)

Additional file 3: Movie3 - exit sequence. CFD simulation of the
sequential entry into the patient room through the anteroom When the
door is open, (T = 1670s-1675s) no significant transfer is observed
between patient room and anteroom that were at the same temperature
(32°C). (mpeg2 movie sequence)
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