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Abstract
Background Tuberculosis (TB) poses a major public health challenge, particularly in children. A substantial 
proportion of children with TB disease remain undetected and unconfirmed. Therefore, there is an urgent need 
for a highly sensitive point-of-care test. This study aims to assess the performance of serological assays based on 
various antigen targets and antibody properties in distinguishing children (0–18 years) with TB disease (1) from 
healthy TB-exposed children, (2) children with non-TB lower respiratory tract infections, and (3) from children with TB 
infection.

Methods The study will use biobanked plasma samples collected from three prospective multicentric diagnostic 
observational studies: the Childhood TB in Switzerland (CITRUS) study, the Pediatric TB Research Network in Spain 
(pTBred), and the Procalcitonin guidance to reduce antibiotic treatment of lower respiratory tract infections in 
children and adolescents (ProPAED) study. Included are children diagnosed with TB disease or infection, healthy 
TB-exposed children, and sick children with non-TB lower respiratory tract infection. Serological multiplex assays will 
be performed to identify M. tuberculosis antigen-specific antibody features, including isotypes, subclasses, Fc receptor 
(FcR) binding, and IgG glycosylation.

Discussion The findings from this study will help to design serological assays for diagnosing TB disease in children. 
Importantly, those assays could easily be developed as low-cost point-of-care tests, thereby offering a potential 
solution for resource-constrained settings.
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Background
Diagnosing tuberculosis (TB) in children presents several 
challenges [1]. TB disease in children is confirmed only 
in about 50% of patients due to the paucibacillary nature 
[2, 3]. In the absence of a reliable and easily accessible 
diagnostic test for screening and confirming TB disease 
in children, diagnosis typically relies on clinical findings, 
TB contact history, chest radiography findings, and the 
results of immune-based TB tests, the Tuberculin skin 
test (TST) and interferon-γ release assays (IGRA) [4]. 
However, both immunodiagnostic tests have suboptimal 
performance and are not well-suited for screening for TB 
disease [5, 6].

Serological assays have the potential to serve as a 
screening tool for TB infection and disease in children, 
especially in resource-limited settings where advanced 
diagnostic methods are limited. This potential stems 
from their blood-based nature, thus not requiring spu-
tum collection, and their feasibility to be used as point-
of-care tests [7]. However, currently available commercial 
serological assays are not recommended for clinical use 
due to their insufficient and variable diagnostic perfor-
mance, characterised by limited sensitivity, specificity, 
and susceptibility to cross-reactivity [8, 9]. In a recent 
narrative review focusing on the diagnostic performance 
of non-commercial serological assays for TB in children, 
we found that studies which measured antibodies against 
only one antigen generally reported relatively high speci-
ficity but only achieved limited sensitivity [10]. Higher 
sensitivity can be achieved when antibodies against mul-
tiple targets are measured, and results are interpreted 
in combination. In addition, emerging evidence sug-
gests that certain antibody properties, such as antibody 
Fc receptor (FcR) binding profiles [11, 12] and antibody 
glycosylation patterns [13], can potentially be used to 

differentiate between TB infection and disease. However, 
most of those studies have been done in adults, and the 
evidence in children remains extremely limited.

Methods
Aim
The aim of this study is to evaluate the diagnostic per-
formance of serological assays in detecting children with 
TB disease, and in distinguishing those subjects from (1) 
healthy TB-exposed children, (2) children with non-TB 
lower respiratory tract infection, and (3) children with 
TB infection.

Study setting and population
This study will utilise plasma samples obtained from 
three different prospective multicentric observational 
studies: the Childhood Tuberculosis in Switzerland (CIT-
RUS) study (NCT03044509), the Pediatric TB Research 
Network in Spain (pTBred), and the Procalcitonin guid-
ance to reduce antibiotic treatment of lower respiratory 
tract infections in children and adolescents (ProPAED) 
study (ISRCTN 17,057,980) (Table 1).

CITRUS is a multicentric prospective diagnostic study 
done at nine centres across Switzerland (Bern, Basel, 
Zurich, Lausanne, Geneva, Aarau, St. Gallen, Lucerne, 
Bellinzona). Its primary objective is to evaluate and vali-
date novel immunodiagnostic assays for childhood TB 
[14, 15]. The study includes children under the age of 
18 years, with or without a history of Bacillus Calmette-
Guérin (BCG) vaccination, who are undergoing evalu-
ation for TB disease, infection, and exposure. Children 
who have received any anti-mycobacterial treatment for 
five days or more before inclusion or who have been pre-
viously treated for TB disease or infection are excluded. 

Table 1 Overview of studies from which samples will be used in the described project, including inclusion- and exclusion criteria
Inclusion criteria Exclusion criteria Study design Time Country

CITRUS < 18 years
Undergoing evaluation for 
TB exposure, TB infection, TB 
disease

- Anti-mycobacterial treatment more than 5 day prior to 
inclusion
- Previous treatment for TB disease or infection

Multi-centric 
study with 
nine centres in 
Switzerland

Since 
May 
2017 (on 
going)

Switzer-
land

pTBred < 18 years Undergoing 
evaluation for TB exposure, TB 
infection, TB disease

- Anti-mycobacterial treatment more than 5 day prior to 
inclusion
- Previous treatment for TB disease or infection

Multidisciplinary 
collaborative 
network

Oct 
2019 
- Jun 
2021

Spain

ProPAED pulmonary non-TB disease:
< 18 years, presentation 
with lower respiratory tract 
infection including fever and 
cough, regardless of previous 
antibiotic treatment history

- Severe immunosuppression
- Known HIV infection
- Immunosuppressive treatment
- Neutropenia
- M. tuberculosis infection
- Cystic fibrosis
- Viral laryngotracheitis
- Hospital stay within the previous 14 days
- Other severe infections (e.g., osteomyelitis, endocarditis, or 
deep tissue abscesses)

Multi-centric 
study with two 
emergency 
departments

Jan 2009 
- Feb 
2010

Switzer-
land
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Recruitment for the CITRUS study began in May 2017 
and is currently ongoing.

PTBred is a multidisciplinary collaborative network 
established in 2014 in Spain, recruiting children < 18 
years with TB. Since 2017, different types of samples 
have been stored in the Biobank of the Gregorio Mara-
ñon Hospital or in the individual collection registered as 
C.0006631 in the National Biobank Collections Registry. 
For this study, a common protocol for sample processing 
was implemented in October 2019, including children 
with children with TB disease, infection, and exposure 
irrespective of their BCG-vaccination status. The pTBred 
and CITRUS study follow the same inclusion and exclu-
sion criteria [16].

The ProPAED study collected samples from children 
and adolescents presenting with fever and cough at 
two emergency departments in Switzerland (Basel and 
Aarau), from January 2009 to February 2010. For the Pro-
PAED study, children with severe immunocompromise 
or known HIV infection, those undergoing immunosup-
pressive treatment, children with M. tuberculosis infec-
tion, neutropenia, cystic fibrosis, viral laryngotracheitis, 
hospital stay within the preceding 14 days, or other 
severe infections (e.g., osteomyelitis, endocarditis, or 
deep tissue abscesses) were excluded [17].

Case definitions
In this study, we will use the published criteria of com-
pound TB case definitions proposed by Graham et al. 
[18]. Briefly, confirmed TB disease is defined as the pres-
ence of bacteriologically confirmed TB disease through 
culture or nucleic acid amplification tests (NAAT). 
Unconfirmed TB disease is defined as the absence of bac-
teriological confirmation in the presence of at least two 
of the following criteria: symptoms or signs suggestive 
of TB disease, chest radiograph consistent with TB dis-
ease, close TB exposure or immunologic evidence of M. 
tuberculosis infection, positive response to TB treatment. 
TB infection is defined as the presence of immunologic 
evidence of M. tuberculosis infection, including a positive 
TST of ≥ 5 mm (in accordance with the Swiss and Span-
ish guidelines [19, 20]) or a positive IGRA without meet-
ing the criteria for confirmed or unconfirmed TB disease. 
Healthy TB-exposed children are defined as asymptom-
atic individuals with negative results on IGRA or TST 
test (single or repeat testing according to age, time since 
exposure as defined by national guidelines), making them 
unlikely to have TB. Children with non-TB lower respi-
ratory tract infection will be the sick control group and 
are defined as presenting with fever (core body tempera-
ture ≥ 38.0° C) and at least one symptom (cough, sputum 
production, pleuritic pain, poor feeding) and at least one 
sign (tachypnea, dyspnoea, wheezing, late inspiratory 

crackles, bronchial breathing, pleural rub) lasting for 
fewer than 14 days.

Age stratification
The study will analyse antibody concentrations and 
properties in children stratified into distinct age groups: 
0 to < 2, 2 to < 5, 5 to < 10, and ≥ 10 years, as proposed 
by Cuevas et al. [21]. This stratification is crucial due to 
the differences and dynamics of the nature of TB disease 
across age. In the youngest age range (infants and chil-
dren < 2 years old), disseminated diseases and heightened 
susceptibility to progression from TB infection to TB 
disease is well-documented [22]. The risks for progres-
sion from infection to disease, as well as the subsequent 
mortality risk following development of disease, con-
sistently declines during childhood, reaching its lowest 
point between 5 and 10 years of age [23]. Transition-
ing into adolescence and the onset of puberty, typically 
beyond the age of 10 years, the phenotype of TB disease 
becomes more adult-like. Pulmonary TB becomes more 
prevalent during this phase, contributing to an upsurge 
in TB-related mortality rates [24, 25].

Selected antigen targets and antibody properties for 
serological assay
Some previous studies in children have demonstrated 
improved specificities achieved by combining both pro-
tein and glycolipid antigens within serological assays 
[26–29]. Furthermore, several studies have illuminated 
the potential for heightened sensitivity through the com-
bined analysis of multiple antigen targets, effectively 
overcoming the interindividual heterogeneity of the 
human humoral immune response to M. tuberculosis 
[26–33].

We will analyse antibodies concentrations and prop-
erties against single protein antigens, single glycolipid 
antigens [12, 34–40], as well as multiple antigens in com-
bination (Table 2). The types of antigens include cell wall 
fractions, whole cell lysates, and total lipids of M. tuber-
culosis. The selection of protein antigens is based on 
results from large protein microarray studies in adults 
[41–46], one large multiplex bead-based study in chil-
dren [31], and published and unpublished data from an 
adult study performed in the U.K (MIMIC study; per-
sonal communication M. Tebruegge) [47]. In order to 
enhance specificity, the overlap of the antigen targets for 
M. tuberculosis with Bacillus Calmette-Guérin (BCG) 
and other non-tuberculous mycobacteria will be reduced.

Together with targeted M. tuberculosis antigens, this 
study will evaluate the following distinct properties of 
the antibodies: isotypes and their subclasses, FcR bind-
ing profiles, and antibody glycosylation patterns (refer 
to Fig. 1). The rational for this is to obtain further infor-
mation about the immune response to the antigen. TB 
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disease results from a combination of the mycobacteria 
infecting and the resulting pathologic immune response. 
Therefore, antibody concentrations may only reflect 
on exposure, timepoint, and burden of mycobacteria, 
whereas additional properties such as FcR may reflect on 
the fact if the immune response producing tissue damage 
and pathology or not. This is shown in studies in children 
with TB disease that have demonstrated the potential 
enhancement of serological assay sensitivity through 
the integration of diverse antibody isotypes [48–50]. 
Recent advancements in adult research have indicated 
that an evaluation of certain antibody properties, such as 
FcRs binding profiles and glycosylation patterns, could 

potentially enable the differentiation between TB disease 
and infection [12, 13].

As a quality control and potential normalisation vari-
able, we will measure the total antibody concentration of 
each isotype and the total antibody concentration bind-
ing to distinct FcRs.

Sample preparation
Upon plasma sample collection, preservation is ensured 
through storage in a − 80  °C freezer until the initiation 
of laboratory assays. Customised multiplex antigen-
coupled beads will be produced to evaluate antigen-
specific antibodies concentrations and properties in 
plasma samples. The protein antigens will be coupled to 

Table 2 Key protein, glycolipid, and multiple antigens
Type Name Rv number/Full name
Protein FbpC (Ag85C) Rv0129c

PstS3 Rv0928
PstS1 Rv0934
PapA4 Rv1528
GarA Rv1827
Apa (Mpt32) Rv1860
FbpB (Ag85B) Rv1886c
Mpt63 Rv1926c
Mpt64 Rv1980c
HspX (Acr) Rv2031c
Acg Rv2032
Rv2034 Rv2034
Hrp1 Rv2626c
EsxO-EsxP Rv2346-Rv2347
EspA Rv3616c
FbpD (Mpt51) Rv3803c
FbpA (Ag85A) Rv3804c
EsxB (CFP-10) Rv3874
EsxA (ESAT-6) Rv3875
EsxA-EsxB (ESAT6-CFP10) Rv3875-Rv3874
EspD-EspC Rv3614-Rv3615
EspB RV3881c
Ag85 complex Rv3804c-Rv1886c-Rv0129c

Glycolipid LAM Lipoarabinomannan
PDIM Phthiocerol dimycocerosates
TDM Trehalose dimycolates
TMM Trehalose monomycolates
PGL Phenolic glycolipid

Multiple antigens (H37Rv) Cell wall fractions contains proteins and non-protein compounds such as mAGP of M. tuberculosis
Cell membrane fractions contains the cytoplasmic membrane and components of the outer lipid layer.
Whole cell lysates contains proteins, lipids and carbohydrates present within the M. tuberculosis bacterial 

cell
Total hypoxic lipids containing hypoxic culture M. tuberculosis
Total normoxic lipids containing normoxic culture M. tuberculosis

Abbreviations: Acg - alpha-crystallin homolog -coregulated gene; Acr - alpha-crystallin homolog; Ag85 complex - antigen 85 complex; Apa - alanine and proline rich 
secreted protein; CFP-10 - culture filtrate protein-10; ESAT-6 - early secreted antigenic target-6; EspA - ESX-1 secretion-associated protein A; EsxA/B/C/D/O/P - early 
secretory antigenic target homolog A/B/C/D/O/P; FbpA/B/C/D - fibronectin binding protein A/B/C/D; GarA - Glycogen accumulation regulator A; Hrp1 - hypoxic 
response protein 1; HspX - heat shock protein-X; Mpt32/51/63/64 - Proteins purified from Mycobacterium tuberculosis 32/51/63/64; PapA4 - polyketide synthase 
(PKS) associated protein; PstS1/3 - periplasmic phosphate-binding lipoprotein S1/3
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carboxylated beads through covalent NHS-ester linkages, 
using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 
hydrochloride and Sulfo-NHS (Thermo Scientific), fol-
lowing the manufacturer’s recommendations [51, 52]. 
Glycan antigen LAM, single lipid antigens (e.g., TDM 
and TMM), and multiple lipid antigen from Mycobac-
terium tuberculosis total lipids will be modified using 
4-(4,6-dimethoxy [1, 3, 5] triazin-2-yl)-4-methyl-mor-
pholinium (DMTMM) dissolved in ethanol and conju-
gated beads following the COOH-DMTMM method 
[53].

The antigen-specific antibodies concentrations and 
properties will be measured using different PE-labelled 
detection antibodies as follows: for the isotypes and 
subclasses, PE-coupled detection antibodies (anti-IgG, 
anti-IgA, anti-IgM, anti-IgG1, anti-IgG2, anti-IgG3 and 
anti-IgG4) at a concentration of 1  µg/mL; [52] for the 
FcR binding profiles, FcRs (FcγRIIIa/CD16a, FcγRIIIb/
CD16b, FcγRIIa/CD32a H167, FcγRIIb/CD32b, FcγRI/
CD64 from R&D Systems) will be labelled with PE and 
added to the samples at a concentration of 1 µg/mL; and 
for the glycosylation profiles, PE-labelled lectins (SNA for 
sialic acid, ECL for galactose, LCA for fucose and PHA-E 
for N-acetylglucosamine) will be used at a concentration 
of 20  µg/mL. After 2  h of incubation at room tempera-
ture, the beads will be washed with PBS-0.05% Tween20, 
and PE signal will be measured using xMAP technology. 
(refer to Fig. 2)

Data management
All data will be securely entered and shared through 
password-protected and encrypted systems to uphold the 
confidentiality of health-related personal information. 
Adhering to Swiss legal requirements for data protection 
(Ordinance HRO Art. 5), our procedures for storing bio-
logical samples and handling health data are meticulously 
governed. Coding mechanisms and personalised logins 
are implemented to grant exclusive access to the study 
database and source documents for authorised person-
nel, thereby preventing third-party disclosure. Unique 
identification numbers are assigned to the biological 
samples and health-related personal data.

Data analysis
Descriptive statistics, including mean, median, standard 
deviation, and interquartile range, will be used to sum-
marise antibody concentrations stratified by diagnostic 
group (TB disease, TB infection, healthy TB-exposed 
controls, and non-TB lower respiratory tract infections) 
and age groups (< 2 years, 2 to < 5 years, 5 to < 10 years, 
and ≥ 10 years). Antigen-specific antibody concentrations 
will be analysed in relation to the total (nonspecific) anti-
body concentrations. Comparisons between groups will 
be made using t-tests or Mann-Whitney U tests if nor-
mality assumptions are not met. Children with TB dis-
ease and infection will be compared with the following 
groups: all other remaining children combined, healthy 
TB-exposed children, and children with non-TB lower 
respiratory tract infections.

Fig. 1 Overview of the antibody properties
Interaction between the surface of M. tuberculosis, binding of the antibody and the recognition of the antibody by an immune cell. Sections A, B, and 
C detail the different antibody properties: A) antibody isotypes and IgG subclasses B) glycosylation patterns of antibodies, including a core glycan and 
potential additional sugar residues (1–4) C) activating and inhibiting FcRs with varying affinities for antibody binding
Abbreviations: Mtb -Mycobacterium tuberculosis; FcR -fragmented crystallizable region (Fc) receptor; IgM - immunoglobulin M; IgD - immunoglobulin D, 
IgG1 − 4 - immunoglobulin G1 − 4; IgA - immunoglobulin A, N - N-acetylglucosamine; M - mannose; G - galactose; S - sialic acid; F - fucose
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To assess the performance of each individual antigen 
specific antibody feature as a diagnostic assay, sensitivity 
and specificity will be calculated based on cut-off values 
determined by the highest Youden’s index. Receiver oper-
ating characteristic (ROC) analysis will be performed, 
and area under the curve (AUC) will be calculated (con-
fidence interval will be determined using the DeLong 
method).

In subsequent analyses, we aim to evaluate the com-
bined interpretation of antigen-specific antibodies con-
centrations and properties using different strategies:

Strategy one involves defining cut-off values based on 
a specificity of ≥ 98%, in accordance with the minimal 
WHO’s TPP requirement for a biomarker-based detec-
tion test. We will calculate the corresponding sensitiv-
ity. Similarly, we will determine cut-off values based on 
a sensitivity of ≥ 66% and calculate the corresponding 
specificity. To assess the combined interpretation of mul-
tiple antigen targets, the test for a specific antibody or 
antibody property will be scored positive if at least one 
antibody level against a specific antigen exceeds the cut-
off value in an individual’s plasma sample, and negative if 
all antibody levels against all antigens in a plasma sample 
are below the cut-off values.

Another strategy for the combined interpretation of 
multiple antibody concentrations and properties will 
involve feature selection using the least absolute shrink-
age and selection operator (LASSO). This approach will 
help identifying the most informative features that could 
be used in diagnostic assays. To validate the predictive 

power of the selected features (k features), we will train 
and evaluate an additional model using only those k fea-
tures. In a further step, we will include the selection of 
antibody concentrations and properties in the train-
ing of the model. By performing feature selection using 
LASSO, we aim to maximize prediction performance 
using all features and select the k most informative fea-
tures after the training stage. This procedure is based on 
the concept that selecting the most informative features 
from a well-performing prediction model will also yield 
a well-performing prediction model when one only has 
access to the selected subset of features. Recent advances 
in machine learning research will enable us to incorpo-
rate feature subset selection directly into the training 
step of a model [54, 55]. Therefore, we optimise not only 
the prediction performance but also the subset selection 
of k features during training. The choice of subset size, 
k, should be based on external constraints. The diverse 
sensitivities and specificities observed in paediatric TB 
serological tests make a precise sample size determina-
tion challenging. To estimate the sample size for our 
experiments, we used data generated from a cohort of 
adults with latent infection (n = 20) and active pulmo-
nary disease (n = 22) from South Africa [56]. For the 
analysis of 75 antibody features, linear regression was 
conducted to assess the association between diagnosis 
and antibody feature, while controlling for age and gen-
der. For the thirteen features exceeding a false discovery 
rate threshold of 10%, the partial correlation coefficient 
of 0.50 or higher was observed between diagnosis and 

Fig. 2 Multiplex bead-based serological assay
For the multiplex bead-base serological assay (1) specific antigens are coupled to beads, (2) plasma samples are incubated with the antigen-coupled 
beads, allowing specific antibodies to bind to corresponding antigens, (3) fluorescently labelled detection antibodies are added, binding to antigen-
specific antibodies or their properties, (4) fluorescence is measured by using a coloured laser, and concentrations are then calculated based on a standard 
curve
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antibody feature. Using this estimate as the effect size of 
biologically active antibody features, 68 individuals in an 
independent cohort (34 LTB, 34 ATB) would provide a 
statistical power of 80% to observe significant differences 
in top antibody features between tuberculosis infection 
and disease at an alpha level of 0.0005. This alpha level 
represents the threshold for significance required by the 
Bonferroni-Holm correction method, set at 0.0005 to 
accommodate the testing of 100 antibody features.

Publication and dissemination policy
Findings of this study will be disseminated through peer-
reviewed journals, scientific conferences, and other rel-
evant platforms. Participants will receive a summary of 
the results. All scientific data generated from this project 
will be made available as soon as possible, and no later 
than the time of publication or the end of the funding 
period, whichever comes first. The data and related meta-
data underlying reported findings will be deposited in a 
public data repository. A data access committee will sup-
port third parties who wish to perform further research 
with the data. Data will be curated in the repository fol-
lowing accepted standards and a persistent identifier, a 
DOI, is created for each data set published. If intellectual 
property is developed, dissemination of data will occur 
after appropriate protections for intellectual property are 
put in place.

Discussion
The development of reliable point-of-care tests for 
detecting TB infection and disease in children is cru-
cial. Serological assays offer a promising approach, as 
they may be used in a point-of-care test format, making 
them suitable for widespread implementation in diverse 
settings [7]. However, there are several hurdles that need 
to be addressed to advance the development of TB sero-
logical assays. One challenge is the incomplete under-
standing of the immunogenic properties of the numerous 
potential antigens of M. tuberculosis, including proteins 
and glycolipids [57]. Our study has four main strengths. 
First, our study will evaluate antibodies against a broad 
range of protein antigens [41, 45, 46, 58], as well as glyco-
lipids that are believed to play a crucial role int the patho-
genesis of M. tuberculosis [59, 60].

Second, to overcome the challenge of potential cross-
reactivity of antibodies detected in a serological assay for 
TB with BCG- and non-tuberculous mycobacteria-anti-
gens [25], we will include a large range of antibodies and 
reduced the overlap between M. tuberculosis and BCG/
non-tuberculous mycobacteria-antigens selected. Third, 
there exists substantial interindividual heterogeneity in 
the antibody response to M. tuberculosis [61, 62]. Dif-
ferent individuals may react to different antigens, result-
ing in relatively low sensitivity but good specificity for 

each individual antigen serological assays [30, 31, 49]. To 
account for this heterogeneity, our analysis includes mul-
tiple antigen targets, such as cell wall fractions and total 
lipids, and aims at a combined interpretation of these 
parameters.

Finally, we will evaluate specific antibody properties, 
such as antibody isotypes, glycosylation patterns, and 
FcR binding profiles [12]. So far, IgG is the most exten-
sively studied isotype and has shown the most promising 
results for use in diagnostic assays to detect TB disease 
in children. Other isotypes, such as IgA, have gained 
attention more recently, as these have a protective role 
in human and animal studies in preventing TB infection 
[63, 64]. Glycosylation of the Fc region affects the bind-
ing affinity of the antibody to the FcRs. Notably, distinct 
glycosylation patterns have been associated with various 
stages of TB disease and infection [11]. Lastly, our data 
analysis is stratified across distinct age groups to accom-
modate the dynamic nature of TB disease during various 
developmental stages of children.

The findings of our study will improve our understand-
ing of the human humoral immune response to M. tuber-
culosis infection and disease and holds the potential to 
pave the way for designing antibody-based assays with 
high performance characteristic for use in children.
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