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Abstract 

Background and purpose The COVID‑19 pandemic has presented unprecedented public health challenges world‑
wide. Understanding the factors contributing to COVID‑19 mortality is critical for effective management and inter‑
vention strategies. This study aims to unlock the predictive power of data collected from personal, clinical, preclinical, 
and laboratory variables through machine learning (ML) analyses.

Methods A retrospective study was conducted in 2022 in a large hospital in Abadan, Iran. Data were collected 
and categorized into demographic, clinical, comorbid, treatment, initial vital signs, symptoms, and laboratory test 
groups. The collected data were subjected to ML analysis to identify predictive factors associated with COVID‑19 
mortality. Five algorithms were used to analyze the data set and derive the latent predictive power of the variables 
by the shapely additive explanation values.

Results Results highlight key factors associated with COVID‑19 mortality, including age, comorbidities (hypertension, 
diabetes), specific treatments (antibiotics, remdesivir, favipiravir, vitamin zinc), and clinical indicators (heart rate, res‑
piratory rate, temperature). Notably, specific symptoms (productive cough, dyspnea, delirium) and laboratory values 
(D‑dimer, ESR) also play a critical role in predicting outcomes. This study highlights the importance of feature selection 
and the impact of data quantity and quality on model performance.

Conclusion This study highlights the potential of ML analysis to improve the accuracy of COVID‑19 mortality predic‑
tion and emphasizes the need for a comprehensive approach that considers multiple feature categories. It highlights 
the critical role of data quality and quantity in improving model performance and contributes to our understanding 
of the multifaceted factors that influence COVID‑19 outcomes.
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Introduction
The World Health Organization (WHO) has declared 
COVID-19 a global pandemic in March 2020 [1]. The first 
cases of SARSCoV-2, a new severe acute respiratory syn-
drome coronavirus, were detected in Wuhan, China, and 
rapidly spread to become a global public health problem 
[2]. The clinical presentation and symptoms of COVID-
19 may be similar to those of Middle East Respiratory 
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Syndrome (MERS) and Severe Acute Respiratory Syn-
drome (SARS), however the rate of spread is higher [3]. 
By December 31, 2022, the pandemic had caused more 
than 729 million cases and nearly 6.7 million deaths 
(0.92%) were confirmed in 219 countries worldwide [4]. 
For many countries, figuring out what measures to take 
to prevent death or serious illness is a major challenge. 
Due to the complexity of transmission and the lack of 
proven treatments, COVID-19 is a major challenge 
worldwide [5, 6]. In middle- and low-income countries, 
the situation is even more catastrophic due to high illit-
eracy rates, a very poor health care system, and lack of 
intensive care units [5]. In addition, understanding the 
factors contributing to COVID-19 mortality is critical for 
effective management and intervention strategies [6].

Numerous studies have shown several factors asso-
ciated with COVID-19 outcomes, including socioeco-
nomic, environmental, individual demographic, and 
health factors [7–9]. Risk factors for COVID -19 mortal-
ity vary by study and population studied [10]. Age [11, 
12], comorbidities such as hypertension, cardiovascular 
disease, diabetes, and COPD [13–15], sex [13], race/eth-
nicity [11], dementia, and neurologic disease [16, 17], are 
some of the factors associated with COVID-19 mortal-
ity. Laboratory factors such as elevated levels of inflam-
matory markers, lymphopenia, elevated creatinine levels, 
and ALT are also associated with COVID-19 mortality [5, 
18]. Understanding these multiple risk factors is critical 
to accurately diagnose and treat COVID-19 patients.

Accurate diagnosis and treatment of the disease 
requires a comprehensive assessment that considers a 
variety of factors. These factors include personal factors 
such as medical history, lifestyle, and genetics; clinical 
factors such as observations on physical examinations 
and physician reports; preclinical factors such as early 
detection through screening or surveillance; labora-
tory factors such as results of diagnostic tests and medi-
cal imaging; and patient-reported signs and symptoms. 
However, the variety of characteristics associated with 
COVID-19 makes it difficult for physicians to accurately 
classify COVID-19 patients during the pandemic.

In today’s digital transformation era, machine learning 
plays a vital role in various industries, including health-
care, where substantial data is generated daily [19–21]. 
Numerous studies have explored machine learning (ML) 
and explainable artificial intelligence (AI) in predicting 
COVID-19 prognosis and diagnosis [22–25]. Chadaga 
et  al. have developed decision support systems and tri-
age prediction systems using clinical markers and bio-
markers [22, 23]. Similarly, Khanna et al. have developed 
a ML and explainable AI system for COVID-19 triage 
prediction [24]. Zoabi has also made contributions in 
this field, developing ML models that predict COVID-19 

test results with high accuracy based on a small number 
of features such as gender, age, contact with an infected 
person and initial clinical symptoms [25]. These stud-
ies emphasize the potential of ML and explainable AI to 
improve COVID-19 prediction and diagnosis. Nonethe-
less, the efficacy of ML algorithms heavily relies on the 
quality and quantity of data utilized for training. Recent 
research has indicated that deep learning algorithms’ 
performance can be significantly enhanced compared to 
traditional ML methods by increasing the volume of data 
used [26]. However, it is crucial to acknowledge that the 
impact of data volume on model performance can vary 
based on data characteristics and experimental setup, 
highlighting the need for careful consideration and anal-
ysis when selecting data for model training. While the 
studies emphasize the importance of features in training 
ML algorithms for COVID-19 prediction and diagnosis, 
additional research is required on methods to enhance 
the interpretability of features.

Therefore, the primary aim of this study is to iden-
tify the key factors associated with mortality in COVID 
-19 patients admitted to hospitals in Abadan, Iran. For 
this purpose, seven categories of factors were selected, 
including demographic, clinical and conditions, comor-
bidities, treatments, initial vital signs, symptoms, and 
laboratory tests, and machine learning algorithms were 
employed. The predictive power of the data was assessed 
using 139 predictor variables across seven feature sets. 
Our next goal is to improve the interpretability of the 
extracted important features. To achieve this goal, we will 
utilize the innovative SHAP analysis, which illustrates the 
impact of features through a diagram.

Materials and methods
Study population and data collection
Using data from the COVID-19 hospital-based registry 
database, a retrospective study was conducted from April 
2020 to December 2022 at Ayatollah Talleghani Hospital 
(a COVID-19 referral center) in Abadan City, Iran.

A total of 14,938 patients were initially screened for 
eligibility for the study. Of these, 9509 patients were 
excluded because their transcriptase polymerase chain 
reaction (RT-PCR) test results were negative or unspeci-
fied. The exclusion of patients due to incomplete or 
missing data is a common issue in medical research, par-
ticularly in the use of electronic medical records (EMRs) 
[27]. In addition, 1623 patients were excluded because 
their medical records contained more than 70% incom-
plete or missing data. In addition, patients younger than 
18 years were not included in the study. The criterion for 
excluding 1623 patients due to "70% incomplete or miss-
ing data" means that the medical records of these patients 
did not contain at least 30% of the data required for a 
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meaningful analysis. This threshold was set to ensure 
that the dataset used for the study contained a suffi-
cient amount of complete and reliable information to 
draw accurate conclusions. Incomplete or missing data 
in a medical record may relate to key variables such as 
patient demographics, symptoms, lab results, treatment 
information, outcomes, or other data points important 
to the research. Insufficient data can affect the validity 
and reliability of study results and lead to potential bias 
or inaccuracies in the findings. It is important to exclude 
such incomplete records to maintain the quality and 
integrity of the research findings and to ensure that the 
conclusions drawn are based on robust and reliable data. 
After these exclusions, 3806 patients remained. Of these 
patients, 474 died due to COVID -19, while the remain-
ing 3332 patients recovered and were included in the 
control group. To obtain a balanced sample, the control 
group was selected with a propensity score matching 
(PSM). The PSM refers to a statistical technique used to 
create a balanced comparison group by matching indi-
viduals in the control group (in this case, the survived 

group) with individuals in the case group (in this case, 
the deceased group) based on their propensity scores. 
In this study, the propensity scores for each person rep-
resented the probability of death (coded as a binary out-
come; survived = 0, deceased = 1) calculated from a set 
of covariates (demographic factors) using the matchit 
function from the MatchIt library. Two individuals, 
one from the deceased group and one from the survived 
group, are considered matched if the difference between 
their propensity scores is small. Non-matching partici-
pants are discarded. The matching aims to reduce bias 
by making the distribution of observed characteristics 
similar between groups, which ultimately improves the 
comparability of groups in observational studies [28]. In 
total, the study included 1063 COVID-19 patients who 
belonged to either the deceased group (case = 474) or the 
survived group (control = 589) (Fig. 1).

In the COVID-19 hospital-based registry database, 
one hundred forty primary features in eight main classes 
including patient’s demographics (eight features), clini-
cal and conditions features (16 features), comorbidities 

Fig. 1 Flowchart describing the process of patient selection
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(18 features), treatment (17 features), initial vital sign (14 
features), symptoms during hospitalization (31 features), 
laboratory results (35 features), and an output (0 for 
survived and 1 for deceased) was recorded for COVID-
19 patients. The main features included in the hospi-
tal-based COVID-19 registry database are provided in 
Appendix Table 1.

To ensure the accuracy of the recorded informa-
tion, discharged patients or their relatives were called 
and asked to review some of the recorded information 
(demographic information, symptoms, and medical his-
tory). Clinical symptoms and vital signs were referenced 
to the first day of hospitalization (at admission). Labora-
tory test results were also referenced to the patient’s first 
blood sample at the time of hospitalization.

The study analyzed 140 variables in patients’ records, 
normalizing continuous variables and creating a binary 
feature to categorize patients based on outcomes. To 
address the issue of an imbalanced dataset, the Synthetic 
Minority Over-sampling Technique (SMOTE) was uti-
lized. Some classes were combined to simplify variables. 

For missing data, an imputation technique was applied, 
assuming a random distribution [29]. Little’s MCAR 
test was performed with the naniar package to assess 
whether missing data in a dataset is missing completely 
at random (MCAR) [30]. The null hypothesis in this test 
is that the data are MCAR, and the test statistic is a chi-
square value.

The Ethics Committee of Abadan University of 
Medical Science approved the research protocol (No. 
IR.ABADANUMS.REC.1401.095).

Predictor variables
All data were collected in eight categories, including 
demographic, clinical and conditions, comorbidities, 
treatment, initial vital signs, symptoms, and laboratory 
tests in medical records, for a total of 140 variables.

The "Demographics" category encompasses eight fea-
tures, three of which are binary variables and five of 
which are categorical. The "Clinical Conditions" category 
includes 16 features, comprising one quantitative vari-
able, 12 binary variables, and five categorical features. 

Table 1 Baseline characteristics of patients infected with COVID‑19

†  P-value conducted from Independent t-test
‡  P-value conducted from Chi-square test

Demographics data Total
(n = 1063)

Survived
(n = 589)

Deceased
(n = 474)

P-value

Age, year 59.53 ± 16.32 54.70 ± 15.60 65.53 ± 15.18  < 0.001†

 < 40 Y 161 (15.1%) 124 (77.0%) 37 (23.0%)  < 0.001‡

40 – 60 Y 379 (35.7%) 254 (67.0%) 125 (33.0%)

 > 60 Y 523 (49.2%) 211 (40.3%) 312 (59.7%)

Sex Male 822 (77.3%) 455 (55.4%) 367 (44.6%) 0.946‡

Female 241 (22.7%) 134 (55.6%) 107 (44.4%)

Occupation Unemployed 290 (26.5%) 160 (55.2%) 130 (44.8%) 0.265‡

Employee 102 (9.7%) 49 (48.0%) 53 (52.0%)

Self‑Employment 671 (38.5%) 380 (56.6%) 291 (43.4%)

Place of residence Urban 796 (74.9%) 437 (54.9%) 359 (45.1%) 0.564‡

Rural 267 (25.1%) 152 (56.9%) 115 (43.1%)

Marital status Married 813 (76.5%) 460 (56.6%) 353 (43.4%) 0.166‡

Single 250 (23.5%) 129 (51.6%) 121 (48.4%)

Education level Under diploma 793 (74.6%) 422 (53.2%) 371 (46.8%) 0.017‡

Undergraduate 258 (24.3%) 162 (62.8%) 96 (37.2%)

Postgraduate 12 (1.1%) 5 (41.7%) 7 (58.3%)

BMI (kg/cm2)  < 18 27 (2.5%) 7 (25.9%) 20 (74.1%)  < 0.001‡

18 – 25 603 (56.7%) 370 (61.4%) 233 (38.6%)

26 – 30 210 (19.8%) 115 (54.8%) 95 (45.2%)

 > 30 223 (21.0%) 97 (43.5%) 126 (56.5%)

Season of admission Spring 272 (25.6%) 154 (56.6%) 118 (43.4%) 0.785‡

Summer 238 (22.4%) 134 (56.3%) 104 (43.7%)

Autumn 315 (29.6%) 176 (55.9%) 139 (47.5%)

Winter 238 (22.4%) 125 (52.5%) 113 (23.5%)
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"Comorbidities", "Treatment", and "Symptoms" each have 
18, 17, and 30 binary features, respectively. Also, there 
is one quantitative variable in symptoms category. The 
"Initial Vital Signs" category features 11 quantitative vari-
ables, two binary variables, and one categorical variable. 
Finally, the "Laboratory Tests" category comprises 35 
features, with 33 being quantitative, one categorical, and 
one binary (Appendix Table 1).

Outcome variable
The primary outcome variable was mortality, with 
December 31, 2022, as the last date of follow‐up. The 
feature shows the class variable, which is binary. For any 
patient in the survivor group, the outcome is 0; other-
wise, it is 1. In this study, 44.59% (n = 474) of the samples 
were in the deceased group and were labeled 1.

Data balancing
In case–control studies, it is common to have unequal 
size groups since cases are typically fewer than controls 
[31]. However, in case–control studies with equal sizes, 
data balancing may not be necessary for ML algorithms 
[32]. When using ML algorithms, data balancing is gen-
erally important when there is an imbalance between 
classes, i.e., when one class has significantly fewer obser-
vations than the other [33]. In such cases, balancing can 
improve the performance of the algorithm by reducing 
the bias in favor of the majority class [34]. For case–con-
trol studies of the same size, the balance of the classes has 
already been reached and balancing may not be neces-
sary. However, it is always recommended to evaluate the 
performance of the ML algorithm with the given data set 
to determine the need for data balancing. This is because 
unbalanced case–control ratios can cause inflated type 
I error rates and deflated type I error rates in balanced 
studies [35].

Feature selection
Feature selection is about selecting important vari-
ables from a large dataset to be used in a ML model to 
achieve better performance and efficiency. Another goal 
of feature selection is to reduce computational effort by 
eliminating irrelevant or redundant features [36, 37]. 
Before generating predictions, it is important to per-
form feature selection to improve the accuracy of clini-
cal decisions and reduce errors [37]. To identify the best 
predictors, researchers often compare the effectiveness 
of different feature selection methods. In this study, we 
used five common methods, including Decision Tree 
(DT), eXtreme Gradient Boosting (XGBoost), Support 
Vector Machine (SVM), Naïve Bayes (NB), and Random 
Forest (RF), to select relevant features for predicting 
mortality of COVID -19 patients. To avoid overfitting, we 

performed ten-fold cross-validation when training our 
dataset. This approach may help ensure that our model 
is optimized for accurate predictions of health status in 
COVID -19 patients.

Model development, evaluation, and clarity
In this study, the predictive models were developed with 
five ML algorithms, including DT, XGBoost, SVM, NB, 
and RF, using the R programming language (v4.3.1) and 
its packages [38]. We used cross-validation (CV) to tune 
the hyperparameters of our models based on the train-
ing subset of the dataset. For training and evaluating 
our ML models, we used a common technique called 
tenfold cross validation [39]. The primary training data-
set was divided into ten folding, each containing 10% of 
the total data, using a technique called stratified random 
sampling. For each of the 30% of the data, a ML model 
was built and trained on the remaining 70% of the data. 
The performance of the model was then evaluated on the 
30%-fold sample. This process was repeated 100 times 
with different training and test combinations, and the 
average performance was reported.

Performance measures include sensitivity (recall), 
specificity, accuracy, F1-score, and the area under the 
receiver operating characteristics curve (AUC ROC). 
Sensitivity is defined as TP / (TP + FN), whereas specific-
ity is TN / (TN + FP). F1-score is defined as the harmonic 
mean of Precision and Recall with equal weight, where 
Precision equals TP + TN / total. Also, AUC refers to the 
area under the ROC curve. In the evaluation of ML tech-
niques, values were classified as poor if below 50%, ok if 
between 50 and 80%, good if between 80 and 90%, and 
very good if greater than 90%. These criteria are com-
monly used in reporting model evaluations [40, 41].

Finally, the shapely additive explanation (SHAP) 
method was used to provide clarity and understanding 
of the models. SHAP uses cooperative game theory to 
determine how each feature contributes to the prediction 
of ML models. This approach allows the computation of 
the contribution of each feature to model performance 
[42, 43]. For this purpose, the package shapr was used, 
which includes a modified iteration of the kernel SHAP 
approach that takes into account the interdependence of 
the features when computing the Shapley values [44].

Results
Patient characteristics
Table  1 shows the baseline characteristics of patients 
infected with COVID-19, including demographic data 
such as age and sex and other factors such as occupa-
tion, place of residence, marital status, education level, 
BMI, and season of admission. A total of 1063 adult 
patients (≥ 18 years) were enrolled in the study, of whom 
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589 (55.41%) survived and 474 (44.59%) died. Analy-
sis showed that age was significantly different between 
the two groups, with a mean age of 54.70 ± 15.60 in the 
survivor group versus 65.53 ± 15.18 in the deceased 
group (P < 0.001). There was also a significant associa-
tion between age and survival, with a higher proportion 
of patients aged < 40 years in the survivor group (77.0%) 
than in the deceased group (23.0%) (P < 0.001). No sig-
nificant differences were found between the two groups 
in terms of sex, occupation, place of residence, mari-
tal status, and time of admission. However, there was a 
significant association between educational level and 
survival, with a lower proportion of patients with a col-
lege degree in the deceased group (37.2%) than in the 
survivor group (62.8%) (P = 0.017). BMI also differed 
significantly between the two groups, with the propor-
tion of patients with a BMI > 30 (kg/cm2) being higher in 
the deceased group (56.5%) than in the survivor group 
(43.5%) (P < 0.001).

Clinical and conditions
Important insights into the various clinical and condi-
tion characteristics associated with COVID-19 infection 

outcomes provides in Table  2. The results show that 
patients who survived the infection had a significantly 
shorter hospitalization time (2.20 ± 1.63  days) compared 
to those who died (4.05 ± 3.10  days) (P < 0.001). Patients 
who were admitted as elective cases had a higher survival 
rate (84.6%) compared to those who were admitted as 
urgent (61.3%) or emergency (47.4%) cases. There were 
no significant differences with regard to the number of 
infections or family infection history. However, patients 
who had a history of travel had a lower decease rate 
(40.1%).

A significantly higher proportion of deceased patients 
had cases requiring CPR (54.7% vs. 45.3%). Patients who 
had underlying medical conditions had a significantly 
lower survival rate (38.3%), with hyperlipidemia being 
the most prevalent condition (18.7%). Patients who had 
a history of alcohol consumption (12.5%), transplantation 
(30.0%), chemotropic (21.4%) or special drug use (0.0%), 
and immunosuppressive drug use (30.0%) also had a 
lower survival rate. Pregnant patients (44.4%) had similar 
survival outcomes compared to non-pregnant patients 
(55.6%). Patients who were recent or current smokers 
(36.4%) also had a significantly lower survival rate.

Table 2 Clinical and conditions characteristics of patients infected with COVID‑19

CPR Cardiopulmonary Resuscitation
†  P-value conducted from Independent t-test
‡  P-value conducted from Chi-square test

Clinical and conditions data Total
(n = 1063)

Survived
(n = 589)

Deceased
(n = 474)

P-value

Hospitalization, day 3.02 ± 2.57 2.20 ± 1.63 4.05 ± 3.10  < 0.001†

Admission type Emergency 561 (52.8%) 266 (47.4%) 295 (52.6%)  < 0.001‡

Urgent 437 (41.1%) 268 (61.3%) 169 (38.7%)

Elective 65 (6.1%) 55 (84.6%) 10 (15.4%)

No. of infection Once 756 (71.1%) 423 (56.0%) 333 (44.0%) 0.673‡

Twice 249 (23.4%) 137 (55.0%) 112 (45.0%)

Three or more 58 (5.5%) 29 (50.0%) 29 (50.0%)

Family infection Yes 798 (75.1%) 442 (55.4%) 356 (44.6%) 0.981‡

Travel Yes 451 (42.4%) 270 (59.9%) 181 (40.1%) 0.012‡

Communication Yes 787 (74.0%) 433 (55.0%) 354 (45.0%) 0.666‡

CPR case Yes 358 (33.7%) 162 (45.3%) 196 (54.7%)  < 0.001‡

Underlying conditions Yes 389 (36.6%) 149 (38.3%) 240 (61.7%)  < 0.001‡

Hyperlipidemia Yes 199 (18.7%) 46 (23.1%) 153 (76.9%)  < 0.001‡

Alcohol consumption Yes 16 (1.5%) 2 (12.5%) 14 (87.5%)  < 0.001‡

Transplantation Yes 20 (1.9%) 6 (30.0%) 14 (70.0%) 0.021‡

Chemotropic Yes 14 (1.3%) 3 (21.4%) 11 (78.6%) 0.010‡

Special Drugs Yes 8 (0.8%) 0 (0.0%) 8 (100%) 0.002‡

Immunosuppressive Drugs Yes 40 (3.8%) 12 (30.0%) 28 (70.0%)  < 0.001‡

Pregnancy Yes 9 (0.8%) 4 (44.4%) 5 (55.6%) 0.506‡

Smoking Recently 365 (34.3%) 133 (36.4%) 232 (63.6%)  < 0.001‡

Before 174 (16.4%) 97 (55.7%) 77 (44.3%)

Never 524 (49.3%) 359 (68.5%) 165 (31.5%)
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Comorbidities
Table  3 summarizes the comorbidity characteristics 
of COVID-19 infected patients. Out of 1063 patients, 
54.84% had comorbidities. Chi-Square tests for indi-
vidual comorbidities showed that most of them had a 
significant association with COVID-19 outcomes, with 
P-values less than 0.05. Among the various comor-
bidities, hypertension (HTN) and diabetes mellitus 
(DM) were the most prevalent, with 12% and 11.5% 
of patients having these conditions, respectively. The 
highest fatality rates were observed among patients 
with cardiovascular disease (95.5%), chronic kidney 
disease (62.5%), gastrointestinal (GI) (93.3%), and liver 
diseases (73.3%). Conversely, patients with neurology 
comorbidities had the lowest fatality rate (0%). These 
results highlight the significant role of comorbidities in 
COVID-19 outcomes and emphasize the need for spe-
cial attention to be paid to patients with pre-existing 
health conditions.

Treatment
The treatment characteristics of the COVID-19 patients 
and the resulting outcomes are shown in Table  4. The 

table shows the frequency of patients who received dif-
ferent types of medications or therapies during their 
treatment. According to the results, the use of antibiotics 
(35.1%), remdesivir (29.6%), favipiravir (36.0%), and Vita-
min zinc (33.5%) was significantly associated with a lower 
mortality rate (P < 0.001), suggesting that these medica-
tions may have a positive impact on patient outcomes. 
On the other hand, the use of Heparin (66.1%), Insulin 
(82.6%), Antifungal (89.6%), ACE inhibitors (78.1%), and 
Angiotensin II Receptor Blockers (ARB) (83.8%) was sig-
nificantly associated with increased mortality (P < 0.001), 
suggesting that these medications may have a negative 
effect on the patient’s outcome. Also, It seems that tak-
ing hydroxychloroquine (51.0%) is associated with a 
worse outcome at lower significance (P = 0.022). The use 
of Atrovent, Corticosteroids and Non-Steroidal Anti-
Inflammatory Drugs (NSAIDs) did not show a significant 
association with survival or mortality rates. Similarly, the 
use of Intravenous Immunoglobulin (IVIg), Vitamin C, 
Vitamin D, and Diuretic did not show a significant asso-
ciation with the patient’s outcome.

Initial vital signs
Table  5 provides initial vital sign characteristics of 
COVID-19 patients, including heart rate, respiratory 
rate, temperature, blood pressure, oxygen therapy, and 
radiography test result. The findings shows that deceased 
patients had higher HR (83.03  bpm vs. 76.14  bpm, 
P < 0.001), lower RR (11.40 bpm vs. 16.25 bpm, P < 0.001), 
higher temperature (37.43  °C vs. 36.91  °C, P < 0.001), 
higher SBP (128.16 mmHg vs. 123.33 mmHg, P < 0.001), 
and higher  O2 requirements (invasive: 75.0% vs. 25.0%, 
P < 0.001) compared to the survived patients. Addition-
ally, deceased patients had higher MAP (99.35  mmHg 
vs. 96.08 mmHg, P = 0.005), and lower  SPO2 percentage 
(81.29% vs. 91.95%, P < 0.001) compared to the survived 
patients. Furthermore, deceased patients had higher 
PEEP levels (5.83 cmH2O vs. 0.69 cmH2O, P < 0.001), 
higher FiO2 levels (51.43% vs. 8.97%, P < 0.001), and more 
frequent bilateral pneumonia (63.0% vs. 37.0%, P < 0.001) 
compared to the survived patients. There appears to be 
no relationship between diastolic blood pressure and 
treatment outcome (83.44 mmHg vs. 85.61 mmHg).

Symptoms
Table 6 provides information on the symptoms of patients 
infected with COVID-19 by survival outcome. The table 
also shows the frequency of symptoms among patients. 
The most common symptom reported by patients was 
fever, which occurred in 67.0% of surviving and deceased 
patients. Dyspnea and nonproductive cough were the 
second and third most common symptoms, reported by 

Table 3 Comorbidities characteristics of patients infected with 
COVID‑19

HTN Hypertension, DM Diabetes mellitus, CVD Cardiovascular disease, CKD 
Chronic kidney disease, COPD Chronic obstructive pulmonary disease, HIV 
Human immunodeficiency virus, HBV Hepatitis B virus, Respiratory Such as 
influenza, pneumonia, asthma, bronchitis, and chronic obstructive airways 
disease, GI Gastrointestinal, Neurology Such as epilepsy, learning disabilities, 
neuromuscular disorders, autism, ADD, brain tumors, and cerebral palsy, Liver 
Such as fatty liver disease and cirrhosis, Hematology Blood disease, Dermatology 
Skin diseases, Psychology Mental disorders
‡ : P-value conducted from Chi-square test

Comorbidities data Total
(n = 1063)

Survived
(n = 589)

Deceased
(n = 474)

P-value

Comorbidity Yes 583 (54.84) 182 (31.3%) 401 (68.7%)  < 0.001‡

HTN Yes 128 (12.0%) 28 (21.9%) 100 (78.1%)  < 0.001‡

DM Yes 122 (11.5%) 22 (18.0%) 100 (82.0%)  < 0.001‡

CVD Yes 44 (4.1%) 2 (4.5%) 42 (95.5%)  < 0.001‡

CKD Yes 40 (3.8%) 15 (37.5%) 25 (62.5%) 0.020‡

COPD Yes 15 (1.4%) 0 (0.0%) 15 (100%) 0.115‡

HIV Yes 2 (0.2%) 0 (0.0%) 2 (100%)  < 0.001‡

HBV Yes 5 (0.5%) 0 (0.0%) 5 (100%) 0.012‡

Cancer Yes 17 (1.6%) 3 (17.6%) 14 (82.4%) 0.002‡

Respiratory Yes 30 (2.8%) 2 (6.7%) 28 (93.3%)  < 0.001‡

GI Yes 49 (4.6%) 46 (93.9%) 3 (6.1%)  < 0.001‡

Neurology Yes 7 (0.7%) 7 (100%) 0 (0.0%) 0.017‡

Endocrine Yes 18 (1.7%) 8 (44.4%) 10 (55.6%) 0.345‡

Liver Yes 30 (2.8%) 8 (26.7%) 22 (73.3%) 0.001‡

Hematology Yes 4 (0.4%) 0 (0.0%) 4 (100%) 0.026‡

Dermatology Yes 34 (3.2%) 12 (35.3%) 22 (64.7%) 0.016‡

Psychology Yes 5 (0.5%) 1 (20.0%) 4 (80.0%) 0.110‡

Other diseases Yes 33 (3.1%) 19 (57.6%) 14 (42.4%) 0.799‡
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Table 4 Treatment characteristics of patients infected with COVID‑19

IVIg Intravenous immunoglobulin, NSAIDs Non-steroidal anti-Inflammatory drugs, ACEi Angiotensin converting enzyme inhibitors, ARB Angiotensin II receptor 
blockers, Zn Zinc
‡ : P-value conducted from Chi-square test

Treatment data Total
(n = 1063)

Survived
(n = 589)

Deceased
(n = 474)

P-value

Antibiotic Yes 439 (41.3%) 285 (64.9%) 154 (35.1%)  < 0.001‡

Remdesivir Yes 476 (44.8%) 335 (70.4%) 141 (29.6%)  < 0.001‡

Favipiravir Yes 572 (53.8%) 366 (64.0%) 206 (36.0%)  < 0.001‡

Hydroxychloroquine Yes 241 (22.7%) 118 (49.0%) 123 (51.0%) 0.022‡

Heparin Yes 171 (16.1%) 58 (33.9%) 113 (66.1%)  < 0.001‡

Atrovent Yes 50 (4.7%) 21 (42.0%) 29 (58.0%) 0.051‡

Insulin Yes 109 (10.3%) 19 (17.4%) 90 (82.6%)  < 0.001‡

Diuretic Yes 95 (8.9%) 57 (60.0%) 38 (40.0%) 0.346‡

Antifungal Yes 251 (23.6%) 26 (10.4%) 225 (89.6%)  < 0.001‡

Corticosteroid Yes 933 (87.8%) 517 (55.4%) 416 (44.6%) 0.995‡

IVIg Yes 77 (7.2%) 39 (50.6%) 38 (49.4%) 0.383‡

NSAIDs Yes 815 (76.7%) 450 (55.2%) 365 (44.8%) 0.817‡

ACEi Yes 128 (12.0%) 28 (21.9%) 100 (78.1%)  < 0.001‡

ARB Yes 37 (3.5%) 6 (16.2%) 31 (83.8%)  < 0.001‡

Vitamin C Yes 294 (27.7%) 174 (59.2%) 120 (40.8%) 0.126‡

Vitamin D Yes 431 (40.5%) 236 (54.8%) 195 (45.2%) 0.724‡

Vitamin Zn Yes 397 (37.3%) 264 (66.5%) 133 (33.5%)  < 0.001‡

Table 5 Initial vital sign characteristics of patients infected with COVID‑19

HR Heart rate, BPM Beats per minute, RR Respiratory rate, T Temperatures, SBP Systolic blood pressure, DBP Diastolic blood pressure, MAP Mean arterial pressure, SPO2 
Oxygen saturation, PaO2 Partial pressure of oxygen in the alveoli, PEEP Positive end-expiratory pressure, FiO2 Fraction of Inspired Oxygen, Pneumonia Radiography 
(X-ray) test result
†  P-value conducted from Independent t-test
‡  P-value conducted from Chi-square test

Initial vital sign data Total
(n = 1063)

Survived
(n = 589)

Deceased
(n = 474)

P-value

HR (Bpm) 79.21 ± 29.43 76.14 ± 18.65 83.03 ± 38.54  < 0.001†

RR (Bpm) 14.09 ± 4.84 16.25 ± 3.96 11.40 ± 4.48  < 0.001†

T (°C) 37.14 ± 1.06 36.91 ± 0.71 37.43 ± 1.32  < 0.001†

SBP (mmHg) 125.48 ± 20.88 123.33 ± 18.52 128.16 ± 23.23  < 0.001†

DBP (mmHg) 84.42 ± 17.86 83.45 ± 15.43 85.61 ± 20.43 0.050†

MAP (mmHg) 97.54 ± 18.97 96.08 ± 16.64 99.35 ± 21.40 0.005†

O2 therapy Non‑invasive 615 (57.9%) 477 (77.6%) 138 (22.4%)  < 0.001‡

Invasive 448 (42.1%) 112 (25.0%) 336 (75.0%)

O2 with mask (L/m) 4.12 ± 3.83 5.45 ± 3.19 2.47 ± 3.93  < 0.001†

Ventilator mode SIMV 179 (16.8%) 24 (13.4%) 155 (86.6%)  < 0.001‡

SPONT 76 (7.1%) 28 (36.8%) 48 (63.2%)  < 0.001‡

CPAP 96 (9.0%) 36 (37.5%) 60 (62.5%)

BIPAP 93 (8.7%) 24 (25.8%) 69 (74.2%)

No 619 (58.2%) 477 (77.1%) 142 (22.9%)

SPO2 (%) 87.19 ± 7.68 91.95 ± 4.09 81.29 ± 6.97  < 0.001†

PaO2 (%) 87.08 ± 5.92 90.81 ± 2.51 82.45 ± 5.67  < 0.001†

PEEP  (cmH2O) 2.98 ± 4.01 0.69 ± 1.44 5.83 ± 4.33  < 0.001†

FiO2 (%) 27.91 ± 37.33 8.97 ± 18.91 51.43 ± 41.04  < 0.001†

Pneumonia Unilateral 542 (51.0%) 396 (73.1%) 146 (26.9%)  < 0.001†

Bilateral 521 (49.0%) 193 (37.0%) 328 (63.0%)
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40.4% and 29.3% of the total sample, respectively. Other 
common symptoms listed in the Table were malodor 
(28.7%), dyspepsia (28.4%), and myalgia (25.6%).

The P-values reported in the table show that some 
symptoms are significantly associated with death, includ-
ing productive cough, dyspnea, sore throat, headache, 
delirium, olfactory symptoms, dyspepsia, nausea, vom-
iting, sepsis, respiratory failure, heart failure, MODS, 
coagulopathy, secondary infection, stroke, acidosis, 
and admission to the intensive care unit. Surviving and 
deceased patients also differed significantly in the aver-
age number of days spent in the ICU. There was no 

significant association between patient outcomes and 
symptoms such as nonproductive cough, chills, diarrhea, 
chest pain, and hyperglycemia.

Laboratory tests
Table  7 shows the laboratory values of COVID-19 
patients with the average values of the different labo-
ratory results. The results show that the deceased 
patients had significantly lower levels of red blood cells 
(3.78 × 106/µL vs. 5.01 × 106/µL), hemoglobin (11.22 g/
dL vs. 14.10 g/dL), and hematocrit (34.10% vs. 42.46%), 
whereas basophils and white blood cells did not differ 

Table 6 Symptoms of patients infected with COVID‑19

Olfactory Smell Disorders, Dyspepsia Indigestion, LOC Level of consciousness, MODS Multiple organ dysfunction syndrome, Hemoptysis Coughing up blood, 
Coagulopathy Bleeding disorder, Hyperglycemia High blood glucose, ICU Intensive care unit
†  P-value conducted from Independent t-test
‡  P-value conducted from Chi-square test

Symptoms data Total
(n = 1063)

Survived
(n = 589)

Deceased
(n = 474)

P-value

Non-productive cough Yes 311 (29.3%) 165 (53.1%) 146 (46.9%) 0.999‡

Productive cough Yes 56 (5.3%) 12 (21.4%) 44 (78.6%)  < 0.001‡

Fever Yes 240 (67.0%) 240 (67.0%) 118 (33.0%)  < 0.001‡

Chills Yes 215 (20.2%) 121 (56.3%) 94 (43.7%) 0.774‡

Anorexia Yes 105 (9.9%) 61 (58.1%) 44 (41.9%) 0.560‡

Myalgia Yes 272 (25.6%) 119 (43.8%) 153 (56.3%)  < 0.001‡

Dyspnea Yes 429 (40.4%) 164 (38.2%) 265 (61.8%)  < 0.001‡

Sore Throat Yes 87 (8.2%) 30 (34.5%) 57 (65.5%)  < 0.001‡

Headache Yes 167 (15.7%) 45 (26.9%) 122 (73.1%)  < 0.001‡

Dizziness Yes 128 (12.0%) 58 (45.3%) 70 (54.7%) 0.014‡

Delirium Yes 117 (11.0%) 42 (35.9%) 75 (64.1%)  < 0.001‡

Rhinorrhea Yes 62 (5.8%) 24 (38.7%) 38 (61.3%) 0.006‡

Nasal congestion Yes 69 (6.5%) 29 (42.0%) 40 (58.0%) 0.021‡

Olfactory Yes 305 (28.7%) 219 (71.8%) 86 (28.2%)  < 0.001‡

Dyspepsia Yes 302 (28.4%) 240 (79.5%) 62 (20.5%)  < 0.001‡

Nausea Yes 208 (19.6%) 164 (78.8%) 44 (21.2%)  < 0.001‡

Vomiting Yes 154 (14.5%) 136 (88.3%) 18 (11.7%)  < 0.001‡

Diarrhea Yes 124 (11.7%) 72 (58.1%) 52 (41.9%) 0.527‡

Chest pain Yes 62 (5.8%) 30 (48.4%) 32 (51.6%) 0.252‡

LOC Yes 69 (6.5%) 20 (29.0%) 49 (71.0%)  < 0.001‡

Sepsis Yes 88 (8.3%) 36 (40.9%) 52 (59.1%) 0.004‡

Respiratory failure Yes 186 (17.5%) 57 (30.6%) 129 (69.4%)  < 0.001‡

Heart failure Yes 106 (10.0%) 21 (19.8%) 85 (80.2%)  < 0.001‡

MODS Yes 138 (13.0%) 12 (8.7%) 126 (91.3%)  < 0.001‡

Coagulopathy Yes 52 (4.9%) 4 (7.7%) 48 (92.3%)  < 0.001‡

Secondary infection Yes 112 (10.5%) 18 (16.1%) 94 (83.9%)  < 0.001‡

Stroke Yes 32 (3.0%) 3 (9.4%) 29 (90.6%)  < 0.001‡

Hyperglycemia Yes 15 (1.4%) 6 (40.0%) 9 (60.0%) 0.227‡

Acidosis Yes 30 (2.8%) 5 (16.7%) 25 (83.3%)  < 0.001‡

I.C.U Admission Yes 608 (57.2%) 257 (42.3%) 351 (57.7%)  < 0.001‡

I.C.U days 1.88 ± 2.61 0.98 ± 1.59 2.99 ± 3.16  < 0.001†
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Table 7 Laboratory features of patients infected with COVID‑19

RBC Red blood cell, WBC White blood cell, LDL Low-density lipoprotein, Hb Hemoglobin, HCT Hematocrit, Alb Albumin, LDL Low-density lipoprotein, HDL High-density 
lipoprotein, PT Prothrombin time, PTT Partial thromboplastin time, INR International normalized ratio, ESR Erythrocyte sedimentation rate, CRP C-reactive-protein, LDH 
Lactate dehydrogenase, AST Aspartate aminotransferase, ALT Alanine aminotransferase, ALK Alkaline phosphatase, CPK-MB Creatine phosphokinase-MB, TNI Troponin 
l, BUN Blood urea nitrogen, Cr Creatinine, Na Sodium, K Potassium, Ca Calcium, P Phosphorus, Mg Magnesium, PLT Platelet, TSH Thyroid stimulating hormone, T3 
Triiodothyronine, T4 Thyroxine
†  P-value conducted from Independent t-test
‡  P-value conducted from Chi-square test

Laboratory data Total
(n = 1063)

Survived
(n = 589)

Deceased
(n = 474)

P-value

RBC (×  106/µL) 4.46 ± 1.70 5.01 ± 1.71 3.78 ± 1.43  < 0.001†

WBC (×  103/µL) 8.71 ± 5.41 8.50 ± 4.78 8.97 ± 6.10 0.156†

Neutrophil (%) 64.25 ± 13.05 62.58 ± 15.83 65.59 ± 10.09  < 0.001†

Lymphocyte (%) 29.85 ± 14.64 29.64 ± 13.81 30.11 ± 15.62 0.597†

Monocyte (%) 4.11 ± 1.65 3.93 ± 1.66 4.34 ± 1.60  < 0.001†

Eosinophil (%) 2.39 ± 1.37 2.37 ± 1.43 2.41 ± 1.30 0.581†

Basophil (%) 0.49 ± 0.50 0.50 ± 0.50 0.48 ± 0.50 0.404†

Hb (g/dL) 12.82 ± 2.76 14.10 ± 2.02 11.22 ± 2.72  < 0.001†

HCT (%) 38.73 ± 7.87 42.46 ± 5.48 34.10 ± 7.93  < 0.001†

Alb (g/dL) 3.63 ± 1.14 3.55 ± 1.10 3.73 ± 1.17 0.013†

LDL (mg/dL) 119.89 ± 30.57 110.09 ± 26.24 132.06 ± 31.20  < 0.001†

HDL (mg/dL) 55.25 ± 21.50 58.52 ± 21.88 51.17 ± 20.31  < 0.001†

PT (seconds) 12.21 ± 2.22 12.59 ± 1.92 11.73 ± 2.45  < 0.001†

PTT (seconds) 31.71 ± 8.04 32.86 ± 7.12 30.28 ± 8.86  < 0.001†

INR (no unit) 0.98 ± 0.18 1.01 ± 0.15 0.94 ± 0.20  < 0.001†

ESR (mm/h) 13.27 ± 7.36 8.42 ± 5.26 19.30 ± 4.61  < 0.001†

CRP  + 335 (31.5%) 249 (74.3%) 86 (25.7%)  < 0.001‡

 +  + 293 (27.6%) 122 (41.6%) 171 (58.4%)

 +  +  + 204 (19.2%) 44 (21.6%) 160 (78.4%)

No 231 (21.7%) 174 (75.3%) 57 (24.7%)

D‑dimer (mg FEU/L) 0.687 ± 0.650 0.155 ± 0.052 1.347 ± 0.394  < 0.001†

LDH (U/L) 149.05 ± 40.65 128.48 ± 31.87 174.61 ± 35.58  < 0.001†

AST (U/L) 63.47 ± 47.93 39.63 ± 25.55 93.09 ± 52.53  < 0.001†

ALT (U/L) 49.11 ± 40.21 28.70 ± 17.53 74.48 ± 45.65  < 0.001†

ALK (IU/L) 98.36 ± 126.39 81.34 ± 92.85 119.51 ± 156.02  < 0.001†

CPK‑MB (IU/L) 3.92 ± 3.07 3.33 ± 2.89 4.65 ± 3.14  < 0.001†

TNI Positive 439 (41.3%) 191 (43.5%) 248 (56.5%)  < 0.001‡

Negative 624 (58.7%) 398 (63.8%) 226 (36.2%)

BUN (mg/dL) 23.49 ± 12.24 17.23 ± 6.39 31.27 ± 13.27  < 0.001†

Cr (mg/dL) 1.60 ± 1.31 0.98 ± 0.34 2.36 ± 1.62  < 0.001†

Na (mmol/L) 140.15 ± 7.22 139.18 ± 5.91 141.36 ± 8.42  < 0.001†

K (mmol/L) 4.57 ± 0.89 4.25 ± 0.67 4.95 ± 0.96  < 0.001†

Ca (mg/dL) 9.04 ± 0.76 9.02 ± 0.73 9.05 ± 0.79 0.508†

P (mg/dL) 3.45 ± 0.97 3.25 ± 0.91 3.70 ± 0.99  < 0.001†

Mg (mg/dL) 2.15 ± 0.57 2.16 ± 0.53 2.14 ± 0.60 0.643†

PLT (×  105/µL) 2.55 ± 1.20 2.77 ± 1.13 2.27 ± 1.21  < 0.001†

TSH (mU/L) 2.17 ± 1.17 1.83 ± 0.81 2.59 ± 1.39  < 0.001†

T3 (ng/dL) 153.83 ± 26.55 157.43 ± 20.87 149.35 ± 31.71  < 0.001†

T4 (ng/dL) 7.93 ± 2.27 8.29 ± 1.93 7.48 ± 2.57  < 0.001†
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significantly between the two groups. The percent-
age of neutrophils (65.59% vs. 62.58%) and monocytes 
(4.34% vs. 3.93%) was significantly higher in deceased 
patients, while the percentage of lymphocytes and 
eosinophils did not differ significantly between the 
two groups. In addition, deceased patients had higher 
levels of certain biomarkers, including D-dimer (1.347 
mgFEU/L vs. 0.155 mgFEU/L), lactate dehydrogenase 
(174.61 U/L vs. 128.48 U/L), aspartate aminotrans-
ferase (93.09 U/L vs. 39.63 U/L), alanine aminotrans-
ferase (74.48 U/L vs. 28.70 U/L), alkaline phosphatase 
(119.51 IU/L vs. 81.34 IU/L), creatine phosphokinase-
MB (4.65  IU/L vs. 3.33  IU/L), and positive troponin I 
(56.5% vs. 43.5%). The proportion of patients with pos-
itive C-reactive protein was also higher in the deceased 
group.

Other laboratory values with statistically significant 
differences between the two groups (P < 0.001) were INR, 
ESR, BUN, Cr, Na, K, P, PLT, TSH, T3, and T4. The sur-
viving patients generally had lower values in these labora-
tory characteristics than the deceased patients.

Model performance and evaluation
Five ML algorithms, namely DT, XGBoost, SVM, NB, 
and RF, were used in this study to build mortality predic-
tion models COVID -19. The models were based on the 
optimal feature set selected in a previous step and were 
trained on the same data set. The effectiveness of the 
models was evaluated by calculating sensitivity, specific-
ity, accuracy, F1 score, and AUC metrics. Table 8 shows 
the results of this performance evaluation. The average 
values are expressed from the test set as the mean (stand-
ard deviation).

The results show that the performance of the models 
varies widely in the different feature categories. The Lab-
oratory Tests category achieved the highest performance, 
with all models scoring 100% in all metrics. The Symp-
toms and initial Vital Signs categories also show high 
performance, with XGBoost achieving the highest accu-
racy of 98.03% and DT achieving the highest sensitivity 
of 92.79%.

The Clinical and Conditions category also showed high 
performance, with all models showing accuracy above 
91%. XGBoost achieved the highest sensitivity and speci-
ficity of 92.74% and 92.96%, respectively. In contrast, the 
Demographics category showed the lowest performance, 
with all models achieving less than 66.5% accuracy.

In summary, the results suggest that certain feature 
categories may be more useful than others in predicting 
mortality from COVID-19 and that some ML models 
may perform better than others depending on the fea-
ture category used.

Feature importance
SHapley Additive exPlanations (SHAP) values indicate 
the importance or contribution of each feature in pre-
dicting model output. These values help to understand 
the influence and importance of each feature on the 
model’s decision-making process.

In Fig. 2, the mean absolute SHAP values are shown 
to depict global feature importance. Figure 2 shows the 
contribution of each feature within its respective group 
as calculated by the XGBoost prediction model using 
SHAP. According to the SHAP method, the features 
that had the greatest impact on predicting COVID-19 
mortality were, in descending order: D-dimer, CPR, 
PEEP, underlying disease, ESR, antifungal treatment, 
PaO2, age, dyspnea, and nausea.

On the other hand, Fig.  3 presents the local expla-
nation summary that indicates the direction of the 
relationship between a variable and COVID-19 out-
come. As shown in Fig. 3(I to VII), older age and very 
low BMI were the two demographic factors with the 
greatest impact on model outcome, followed by clini-
cal factors such as higher CPR, hospitalization, and 
hyperlipidemia. Higher mortality rates were associ-
ated with patients who smoked and had traveled in the 
past 14  days. Patients with underlying diseases, espe-
cially HTN, died more frequently. In contrast, the use 
of remdesivir, Vit Zn, and favipiravir is associated with 
lower mortality. Initial vital signs such as high PEEP, 
low PaO2 and RR had the greatest impact, as did symp-
toms such as dyspnea, MODS, sore throat and LOC. 
A higher risk of mortality is observed in patients with 
higher D-dimer levels and ESR as the most consequen-
tial laboratory tests, followed by K, AST and CPK-MB.

Using the feature types listed in Appendix Table  1, 
Fig.  4 shows that the performance of ML algorithms 
can be improved by increasing the number of features 
used in training, especially in distinguishing between 
symptoms, comorbidities, and treatments. In addition, 
the amount and quality of data used for training can 
significantly affect algorithm performance, with labo-
ratory tests being more informative than initial vital 
signs. Regarding the influence of features, quantitative 
features tend to have a more positive effect on perfor-
mance than qualitative features; clinical conditions 
tend to be more informative than demographic data. 
Thus, both the amount of data and the type of features 
used have a significant impact on the performance of 
ML algorithms.

Discussion
The COVID-19 pandemic has presented unprecedented 
public health challenges worldwide and requires a deep 
understanding of the factors contributing to COVID-19 
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mortality to enable effective management and inter-
vention. This study used machine learning analysis to 
uncover the predictive power of an extensive dataset 
that includes wide range of personal, clinical, preclini-
cal, and laboratory variables associated with COVID-19 
mortality.

This study confirms previous research on COVID-
19 outcomes that highlighted age as a significant pre-
dictor of mortality [45–47], along with comorbidities 
such as hypertension and diabetes [48, 49]. Underlying 

conditions such as cardiovascular and renal disease also 
contribute to mortality risk [50, 51].

Regarding treatment, antibiotics, remdesivir, favipira-
vir, and vitamin zinc are associated with lower mortal-
ity [52, 53], whereas heparin, insulin, antifungals, ACE, 
and ARBs are associated with higher mortality [54]. This 
underscores the importance of drug choice in COVID 
-19 treatment.

Initial vital signs such as heart rate, respiratory 
rate, temperature, and oxygen therapy differ between 

Table 8 Performance comparison of ML models by feature sets in predicting mortality from COVID‑19

The average values are expressed from the test set as the Mean (SD)

DT Decision Tree, XGBoost eXtreme Gradient Boosting, SVM Support Vector Machine, NB Naïve Bayes, RF Random Forest

Feature set Model Sensitivity Specificity Accuracy F1-score AUC 

Demographic DT 63.26 (13.59) 66.48 (12.19) 65.02 (2.60) 63.26 (13.59) 64.87 (2.24)

XGBoost 60.50 (3.79) 68.30 (3.95) 64.83 (2.58) 60.50 (3.79) 64.40 (2.57)

SVM 66.12 (3.15) 63.08 (3.59) 64.36 (1.67) 66.12 (3.15) 64.60 (1.48)

NB 62.48 (3.77) 63.97 (5.08) 63.29 (2.33) 62.48 (3.77) 63.23 (2.10)

RF 61.37 (2.57) 70.58 (3.96) 66.49 (1.84) 61.37 (2.57) 65.97 (1.77)

Clinical & Conditions DT 90.85 (4.22) 86.04 (5.03) 88.24 (1.58) 90.85 (4.22) 88.45 (1.47)

XGBoost 92.74 (2.46) 92.96 (2.37) 92.82 (0.77) 92.74 (2.46) 92.85 (0.70)

SVM 90.70 (3.24) 92.61 (2.12) 91.72 (1.03) 90.70 (3.24) 91.66 (1.14)

NB 88.40 (2.58) 94.32 (1.87) 91.63 (0.75) 88.40 (2.58) 91.36 (0.85)

RF 92.88 (2.51) 92.85 (2.08) 92.82 (0.87) 92.88 (2.51) 92.86 (0.87)

Comorbidities DT 74.83 (1.88) 79.19 (1.80) 77.35 (0.47) 74.83 (1.88) 77.01 (0.32)

XGBoost 77.45 (1.32) 83.43 (1.28) 80.88 (0.57) 77.45 (1.32) 80.44 (0.74)

SVM 74.83 (1.88) 78.93 (1.38) 77.19 (0.39) 74.83 (1.88) 76.88 (0.46)

NB 75.58 (1.89) 79.76 (1.18) 77.98 (0.16) 78.58 (1.89) 77.67 (0.44)

RF 75.19 (1.50) 81.96 (1.84) 79.08 (1.04) 75.19 (1.50) 78.58 (1.20)

Treatment DT 75.17 (4.35) 87.62 (2.60) 81.94 (1.81) 75.17 (4.35) 81.39 (1.90)

XGBoost 78.42 (3.43) 89.27 (1.58) 84.29 (1.59) 78.42 (3.43) 83.84 (1.69)

SVM 72.89 (2.39) 91.15 (1.34) 82.82 (1.30) 72.89 (2.39) 82.02 (1.36)

NB 72.33 (3.64) 88.50 (2.25) 81.13 (2.04) 72.33 (3.64) 80.42 (2.10)

RF 79.17 (3.32) 89.55 (1.36) 84.80 (1.52) 79.17 (3.32) 84.36 (1.61)

Initial vital signs DT 90.30 (2.52) 98.53 (1.91) 95.77 (1.11) 92.30 (2.52) 95.42 (1.17)

XGBoost 95.85 (1.97) 99.83 (0.53) 98.06 (0.97) 95.85 (1.97) 97.84 (1.06)

SVM 94.45 (1.61) 99.49 (0.62) 97.24 (1.02) 94.45 (1.61) 96.97 (1.06)

NB 87.37 (2.09) 99.21 (0.76) 93.95 (1.19) 87.37 (2.09) 93.29 (1.24)

RF 94.63 (2.02) 99.83 (0.54) 97.52 (1.12) 94.63 (2.02) 97.23 (1.20)

Symptoms DT 92.79 (3.69) 97.09 (1.39) 95.24 (2.05) 92.79 (3.69) 94.94 (2.25)

XGBoost 97.08 (1.32) 98.76 (0.79) 98.03 (0.78) 97.08 (1.32) 97.92 (0.78)

SVM 91.78 (2.48) 98.02 (1.05) 95.27 (1.38) 91.78 (2.48) 94.90 (1.45)

NB 82.03 (4.83) 90.19 (3.29) 86.58 (2.19) 82.03 (4.83) 86.11 (2.32)

RF 95.55 (2.17) 97.82 (0.51) 96.83 (1.01) 95.55 (2.17) 96.69 (1.14)

Laboratory test DT 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)

XGBoost 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)

SVM 99.80 (0.33) 100 (0.0) 99.91 (0.15) 99.80 (0.33) 99.90 (0.16)

NB 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)

RF 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)
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Fig. 2 Feature importance based on SHAP‑values. The mean absolute SHAP values are depicted, to illustrate global feature importance. The SHAP 
values change in the spectrum from dark (higher) to light (lower) color
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Fig. 3 The SHAP‑based feature importance of all categories (I to VII) for COVID‑19 mortality prediction, calculated with the XGBoost model. The 
local explanatory summary shows the direction of the relationship between a feature and patient outcome. Positive SHAP values indicate death, 
whereas negative SHAP values indicate survival. As the color scale shows, higher values are blue while lower values are orenge

Fig. 4 Association between feature sets and performance of machine learning algorithms in predicting COVID‑19’s mortality
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surviving and deceased patients [55]. Deceased patients 
often have increased heart rate, lower respiratory rate, 
higher temperature, and increased oxygen requirements, 
which can serve as early indicators of disease severity.

Symptoms such as productive cough, dyspnea, and 
delirium are significantly associated with COVID-19 
mortality, emphasizing the need for immediate monitor-
ing and intervention [56]. Laboratory tests show altered 
hematologic and biochemical markers in deceased 
patients, underscoring the importance of routine labora-
tory monitoring in COVID-19 patients [57, 58].

The ML algorithms were used in the study to predict 
mortality COVID-19 based on these multilayered vari-
ables. XGBoost and Random Forest performed better 
than other algorithms and had high recall, specific-
ity, accuracy, F1 score, and AUC. This highlights the 
potential of ML, particularly the XGBoost algorithm, in 
improving prediction accuracy for COVID-19 mortality 
[59]. The study also highlighted the importance of drug 
choice in treatment and the potential of ML algorithms, 
particularly XGBoost, in improving prediction accuracy. 
However, the study’s findings differ from those of Mou-
laei [60], Nopour [61], and Mehraeen [62] in terms of the 
best-performing ML algorithm and the most influential 
variables. While Moulaei [60] found that the random for-
est algorithm had the best performance, Nopour [61] and 
Ikemura [63] identified the artificial neural network and 
stacked ensemble models, respectively, as the most effec-
tive. Additionally, the most influential variables in pre-
dicting mortality varied across the studies, with Moulaei 
[60] highlighting dyspnea, ICU admission, and oxygen 
therapy, and Ikemura [63] identifying systolic and dias-
tolic blood pressure, age, and other biomarkers. These 
differences may be attributed to variations in the data-
sets, feature selection, and model training.

However, it is important to note that the choice of 
algorithm should be tailored to the specific dataset and 
research question. In addition, the results suggest that a 
comprehensive approach that incorporates different fea-
ture categories may lead to more accurate prediction of 
COVID-19 mortality. In general, the results suggest that 
the performance of ML models is influenced by the num-
ber and type of features in each category. While some 
models consistently perform well across different catego-
ries (e.g., XGBoost), others perform better for specific 
types of features (e.g., SVM for Demographics).

Analysis of the importance of characteristics using 
SHAP values revealed critical factors affecting model 
results. D-dimer values, CPR, PEEP, underlying diseases, 
and ESR emerged as the most important features, high-
lighting the importance of these variables in predict-
ing COVID-19 mortality. These results provide valuable 

insights into the underlying mechanisms and risk factors 
associated with severe COVID-19 outcomes.

The types of features used in ML models fall into two 
broad categories: quantitative (numerical) and qualitative 
(binary or categorical). The performance of ML methods 
can vary depending on the type of features used. Some 
algorithms work better with quantitative features, while 
others work better with qualitative features. For example, 
decision trees and random forests work well with both 
types of features [64], while neural networks often work 
better with quantitative features [65, 66]. Accordingly, we 
consider these levels for the features under study to bet-
ter assess the impact of the data.

The success of ML algorithms depends largely on the 
quality and quantity of the data on which they are trained 
[67–69]. Recent research, including the 2021 study by 
Sarker IH. [26], has shown that a larger amount of data 
can significantly improve the performance of deep learn-
ing algorithms compared to traditional machine learning 
techniques. However, it should be noted that the effect 
of data size on model performance depends on several 
factors, such as data characteristics and experimental 
design. This underscores the importance of carefully and 
judiciously selecting data for training.

Limitations
One of the limitations of this study is that it relies on data 
collected from a single hospital in Abadan, Iran. The data 
may not be representative of the diversity of COVID -19 
cases in different regions, and there may be differences 
in data quality and completeness. In addition, retrospec-
tively collected data may have biases and inaccuracies. 
Although the study included a substantial number of 
COVID -19 patients, the sample size may still limit the 
generalizability of the results, especially for less common 
subgroups or certain demographic characteristics.

Future works
Future studies could adopt a multi-center approach to 
improve the scope and depth of research on COVID-19 
outcomes. This could include working with multiple hos-
pitals in different regions of Iran to ensure a more diverse 
and representative sample. By conducting prospective 
studies, researchers can collect data in real time, which 
reduces the biases associated with retrospective data col-
lection and increases the reliability of the results. Increas-
ing sample size, conducting longitudinal studies to track 
patient progression, and implementing quality assur-
ance measures are critical to improving generalizability, 
understanding long-term effects, and ensuring data accu-
racy in future research efforts. Collectively, these strate-
gies aim to address the limitations of individual studies 
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and make an important contribution to a more compre-
hensive understanding of COVID-19 outcomes in differ-
ent populations and settings.

Conclusions
In summary, this study demonstrates the potential of ML 
algorithms in predicting COVID-19 mortality based on a 
comprehensive set of features. In addition, the interpret-
ability of the models using SHAP-based feature impor-
tance, which revealed the variables strongly correlated 
with mortality. This study highlights the power of data-
driven approaches in addressing critical public health 
challenges such as the COVID-19 pandemic. The results 
suggest that the performance of ML models is influenced 
by the number and type of features in each feature set. 
These findings may be a valuable resource for health pro-
fessionals to identify high-risk patients COVID-19 and 
allocate resources effectively.
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