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Abstract 

Introduction  Carbapenem-resistant gram-negative bacilli are a worldwide concern because of high morbidity 
and mortality rates. Additionally, the increasing prevalence of these bacteria is dangerous. To investigate the extent 
of antimicrobial resistance and prioritize the utility of novel drugs, we evaluated the molecular characteristics 
and antimicrobial susceptibility profiles of carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa and Aci-
netobacter baumannii in Ecuador in 2022.

Methods  Ninety-five clinical isolates of carbapenem non-susceptible gram-negative bacilli were collected from six 
hospitals in Ecuador. Carbapenem resistance was confirmed with meropenem disk diffusion assays following Clinical 
Laboratory Standard Institute guidelines. Carbapenemase production was tested using a modified carbapenemase 
inactivation method. Antimicrobial susceptibility was tested with a disk diffusion assay, the Vitek 2 System, and gra‑
dient diffusion strips. Broth microdilution assays were used to assess colistin susceptibility. All the isolates were 
screened for the blaKPC, blaNDM, blaOXA-48, blaVIM and blaIMP genes. In addition, A. baumannii isolates were screened 
for the blaOXA-23, blaOXA-58 and blaOXA-24/40 genes.

Results  Carbapenemase production was observed in 96.84% of the isolates. The blaKPC, blaNDM and blaOXA-48 genes 
were detected in Enterobacterales, with blaKPC being predominant. The blaVIM gene was detected in P. aeruginosa, 
and blaOXA-24/40 predominated in A. baumannii. Most of the isolates showed co-resistance to aminoglycosides, fluoro‑
quinolones, and trimethoprim/sulfamethoxazole. Both ceftazidime/avibactam and meropenem/vaborbactam were 
active against carbapenem-resistant gram-negative bacilli that produce serin-carbapenemases.

Conclusion  The epidemiology of carbapenem resistance in Ecuador is dominated by carbapenemase-producing 
K. pneumoniae harbouring blaKPC. Extensively drug resistant (XDR) P. aeruginosa and A. baumannii were identified, 
and their identification revealed the urgent need to implement strategies to reduce the dissemination of these strains.
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Introduction
The increasing number of multidrug-resistant organisms 
(MDROs) constitutes a major threat to health worldwide. 
MDROs are linked to increasing costs and mortality rates 
[1] and are an important challenge to clinicians due to 
the complicated choice of treatment option [2].

The World Health Organization included carbape-
nem-resistant Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacterales as “priority antibiotic-
resistant pathogens”, for which the research and devel-
opment of new antimicrobial agents is critical [3]. The 
dissemination of these pathogens is mainly due to high-
risk clones and is generally associated with health care-
associated infections with high mortality rates [4, 5].

The mechanisms of carbapenem resistance are diverse 
but are dominated by the expression of carbapenemases. 
The prevalence of carbapenemases varies according to 
region [2]. In Ecuador, despite the high prevalence of 
carbapenem-resistant Enterobacterales (CRE) (37%) and 
other gram-negative rod-shaped bacteria [6, 7], there is 
little information about the mechanisms involved and 
the antimicrobial susceptibility profiles, including that to 
recently approved antibiotics such as ceftazidime/avibac-
tam, meropenem/vaborbactam, or ceftolozane/tazobac-
tam, which constitute the first line of treatment against 
carbapenem-resistant gram-negative rod-shaped bacteria 
[8, 9].

Thus, essential information is required to optimize the 
administration of antibiotics as a lack of knowledge could 
lead to the misuse of antibiotics and the rapid develop-
ment of antimicrobial resistance.

Therefore, to clarify the extent of antimicrobial resist-
ance and prioritize the utility of newly available drugs, 
our goal was to determine the molecular characteristics 
and antimicrobial susceptibility profiles of clinical CRE, 
P. aeruginosa and A. baumannii complex isolates from 
Ecuador.

Methodology
A multicentre study was carried out in six hospitals in 
Ecuador between January 2022 and May 2022. Clini-
cal isolates of CRE, P. aeruginosa and the A. baumannii 
complex were collected according to protocols estab-
lished by each institution. Carbapenem resistance was 
defined when the isolate was non-susceptible to any of 
the carbapenems tested according to Clinical Standards 
Institute (CLSI) breakpoints [10]. Only one clinical iso-
late from each patient was studied, and there was a pref-
erence for samples from sterile sites or those with the 
greatest resistance phenotype.

CRE isolates were cultured on CHROMagar Super 
Carba (CHROMagar, France). P. aeruginosa and A. bau-
mannii complex isolates were cultured on MacConkey 

agar (16–18  h; 35  °C) (Becton–Dickinson, England) to 
check their viability and purity. Isolates were identified 
with the Vitek 2 System (BioMérieux, France) and con-
ventional biochemical tests.

Carbapenem resistance was confirmed with mero-
penem disk diffusion assays using CLSI methodol-
ogy. Carbapenemase production was studied with the 
modified carbapenem inactivation method (mCIM) for 
Enterobacterales and P. aeruginosa according to CLSI 
guidelines [10]. A. baumannii complex isolates were 
studied with the optimized carbapenem inactivation 
method described by Zhang S. et al. [11].

Antimicrobial susceptibility testing
Susceptibility tests for ciprofloxacin, amikacin, gen-
tamicin, trimethoprim/sulfamethoxazole, tigecycline, 
ceftazidime, cefepime, meropenem imipenem, ampicil-
lin/sulbactam and piperacillin/tazobactam were per-
formed using disk diffusion assays and the Vitek 2 System 
(AST-N402 or AST-N401 Card) (BioMérieux, France). 
Minimal inhibitory concentrations (MICs) for ceftazi-
dime/avibactam and meropenem/vaborbactam were 
determined using gradient diffusion strips (Liofilchem, 
Italy). MIC values and disk diffusion results were inter-
preted using CLSI breakpoints [10]. For tigecycline, the 
U.S. Food and Drug Administration (FDA) breakpoints 
were used (susceptible ≥ 19 mm or ≤ 2 µg/ml) for Entero-
bacterales [12]. For meropenem/vaborvactam, European 
Committee on Antimicrobial Susceptibility (EUCAST) 
testing breakpoints were used for P. aeruginosa (suscep-
tible ≤ 8 µg/ml) [13].

Susceptibility to ceftazidime/avibactam and mero-
penem/vaborbactam was not tested in NDM-positive 
isolates.

The MIC of colistin was obtained using a broth micro-
dilution (CBM) method, as described in CLSI docu-
ment M07-A8 [14]. Analytical grade colistin sulfate 
(Sigma‒Aldrich Code C2700000, batch 3.0) and Mueller 
Hinton broth with cation adjustment (Thermo Fischer 
Scientific, United Kingdom) were used. The concentra-
tion range was 0.5–4 µg/mL, and CLSI breakpoints were 
used to define colistin resistance (MIC values ≥ 4 µg/mL) 
[10]. The MIC50 and MIC90 were determined for each 
antimicrobial.

Escherichia coli ATCC 25922, P. aeruginosa ATCC 
27853, K. pneumoniae BAA ATCC 1705 and E. coli AR 
Bank #0349 were used for quality control.

Detection of carbapenemase and mcr‑1 genes
The carbapenemase-encoding genes blaKPC, blaNDM, 
blaOXA-48, blaVIM, and blaIMP were studied using mul-
tiplex polymerase chain reaction (PCR) in all iso-
lates [15]. Additionally, the blaOXA-23-like, blaOXA-58 and 
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blaOXA-24/40-like genes were studied in A. baumannii com-
plex isolates with a previously described multiplex PCR 
method [16].

The molecular detection of the colistin-resistance gene 
mcr-1 was performed via PCR [17].

Clonality study
Clonal relatedness was studied in blaKPC-positive K. 
pneumoniae, blaVIM-positive P. aeruginosa and blaOXA-

24/40-positive A. baumannii complex using ERIC-PCR fol-
lowing a previously described method [18].

Dendrograms were constructed using GelJ software 
based on Dice’s similarity coefficient and the unweighted 
pair group method (UPGM) (tolerance 2%). The cut-off 
level for ERIC-PCR electrophoretic pattern delineation 
was 80% similarity.

Results
One hundred and twenty-nine isolates were obtained for 
analysis. Thirty-four were rejected for inconsistencies 
in shipments or duplications (26.35%). Thus, a total of 
ninety-five isolates were included in the study (73.64%).

Enterobacterales predominated among the sample 
and accounted for 60 isolates studied (63.15%), with K. 
pneumoniae being the most frequently isolated spe-
cies (n = 45; 47.36%). K. aerogenes, E. cloacae and E. coli 
were also present in 16.66% (n = 10), 5% (n = 3) and 3.33% 
(n = 2) of samples, respectively. The A. baumannii com-
plex was present in 25.26% (n = 24) of the samples, and P. 
aeruginosa was present in 11.57% (n = 11) of the samples.

Carbapenemase production was confirmed in 92 iso-
lates (96.84%). Three P. aeruginosa isolates tested nega-
tive for mCIM.

BlaKPC was the most frequent carbapenemase-encod-
ing gene found in Enterobacterales (n = 52; 86.66%). 
BlaNDM (n = 7; 11.66%) and blaOXA-48 (n = 1; 1.66%) were 
also detected. Neither blaIMP nor blaVIM was detected in 
Enterobacterales. Both ceftazidime/avibactam (MIC50 
and MIC90 <  = 0.12/4 µg/ml) and meropenem/vaborbac-
tam (MIC50 0.064/8  µg/ml; MIC90 0.84/8  µg/ml) were 
active against all tested isolates harbouring blaKPC. The 
susceptibility rates to CPE were 95% and 76.67% for tige-
cycline and colistin, respectively.

Detailed information about the susceptibility patterns 
of the CPE strains, K. pneumoniae strains and K. aero-
genes blaKPC strains is provided in Table 1.

Tigecycline and colistin were the only drugs that K. 
aerogenes blaNDM isolates were susceptible to (n = 1). E. 
cloacae blaKPC isolates (n = 2) were resistant to most of 
the antimicrobials tested, except for amikacin tigecycline, 
colistin, ceftazidime/avibactam and meropenem/vabor-
bactam, as observed for E. coli blaKPC (n = 1).

E. cloacae blaNDM (n = 1) was only susceptible to colis-
tin and amikacin.

The susceptibility profile of E. coli blaoxa-48 was the 
most conserved. This isolate was resistant to only cip-
rofloxacin, trimethoprim/sulfamethoxazole, and cef-
tazidime. Tigecycline, colistin, ceftazidime/avibactam, 
trimethoprim/sulfamethoxazole and colistin were active 
against E. coli blaKPC. These strains were resistant to cip-
rofloxacin, aminoglycosides and all beta-lactam antimi-
crobial agents tested.

In P. aeruginosa, only blaVIM was detected (n = 8; 
72.72%). Three isolates lacked any of the examined car-
bapenemase genes and tested negative for mCIM. All 
antimicrobials tested showed high resistance in blaVIM-
positive P. aeruginosa. Ceftolozane/tazobactam was 
active against carbapenemase-negative P. aeruginosa.

In A. baumannii complex isolates, 66.66% (n = 16) of 
the patients were blaOXA-24/40 positive, and 33.33% (n = 8) 
of the patients were blaOXA23 positive. blaKPC, blaNDM, 
blaOXA-48, blaVIM, and blaIMP were not detected in any 
of the isolates. A. baumannii complex isolates were only 
susceptible to colistin (95%), regardless of which gene 
was present in the isolates.

Tables 2 and 3 provide comprehensive details regarding 
carbapenem-resistant non-fermentative gram-negative 
pathogens. The MIC values of the antimicrobials evalu-
ated are detailed in Supplementary Table 1.

None of the colistin-resistant isolates carried the mcr-1 
gene.

BlaVIM-positive P. aeruginosa and blaKPC-positive K. 
pneumoniae (n = 35) isolates exhibited significant genetic 
heterogenicity (Supplementary Figs. 1 and 2).

In the blaOXA-24/40-positive A. baumannii complex, six 
electrophoretic patterns were found, and 50% of the iso-
lates belonged to only one pattern, indicating the clonal 
dissemination of this microorganism (Supplementary 
Fig. 3).

Four electrophoretic patterns were found in blaKPC-
positive K. aerogenes (8 isolates studied) (Supplementary 
Fig. 4).

Discussion
Our research describes the molecular characteristics of 
carbapenem-resistant gram-negative rod-shaped bacte-
ria in Ecuador. Carbapenemase production was preva-
lent in the isolates studied (96.64%), and carbapenemase 
production has been described by several authors as the 
main mechanism involved in carbapenem resistance  
[6, 19–21].

Carbapenemase-encoding genes such as blaKPC, blaNDM 
and blaOXA-48 were detected in Enterobacterales, and 
blaKPC was the predominant gene. Our results are simi-
lar to those described in other Western countries, such 
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as the United States, Argentina, Colombia, and Brazil, 
which described blaKPC as the prevalent gene linked to K. 
pneumoniae [7, 21, 22]. Our results also agree with pre-
vious data published in 2022 by the National Reference 
Laboratory, which described K. pneumoniae harbouring 
blaKPC as the main cause of carbapenem resistance in 
Enterobacterales in Ecuador [23].

In our study, we did not find blaNDM (11.47%) or 
blaOXA-48 (1.64%) genes very frequently in Enterobacte-
rales; these percentages are comparable to those reported 
in a national surveillance report [23]. However, given the 
small number of isolates, we advise using caution when 
considering this information. BlaNDM was detected in K. 
pneumoniae, K. aerogenes and E. cloacae. Interestingly, 

Table 2  Susceptibility antimicrobial against P. aeruginosa 

NT not tested, DD Disk diffusion, AK Amikacin, GN Gentamicin, CIP Ciprofloxacin, COL Colistin, CAZ/AVI Ceftazidime/avibactam, MER/VAB Meropenem/vaborbactam, 
CAZ Ceftazidime, FEP Cefepime, IMP Imipenem, MER Meropenem, CEF/TAZ, PTZ Piperacillin/tazobactam
a EUCAST Breakpoints

P aeruginosa blaVIM n = 8 P.aeruginosa mCIM negative n = 3 P. aeruginosa 
n = 11

Antimicrobials Susceptible MIC50 µg/ml MIC90 µg/ml Susceptible MIC50 µg/ml MIC90 µg/ml Susceptible

No % No % No %

AK 4 50 4 32 2 66.67 16 16 6 54.54

GN 2 25  ≥ 32  ≥ 32 1 33.33 4 8 3 27.27

CIP 1 12.5  ≥ 4  ≥ 4 1 33.33 0.5  ≥ 4 1 9.09

COL 4 50 2  ≥ 8 3 100.00 1 1 7 63.63

CAZ/AVI NT NT NT NT 3a 100.00 DD DD 3a 100

MER/VAR NT NT NT NT 3a 100.00 0.5 1 3a 100

CAZ 0 0  ≥ 64  ≥ 64 2 66.67 4  ≥ 64 2 18.18

FEP 0 0  ≥ 32  ≥ 32 1 33.33 8  ≥ 32 1 9.09

IMP 0 0  ≥ 16  ≥ 16 0 0.00  ≥ 16  ≥ 16 0 0

MER 0 0  ≥ 16  ≥ 16 0 0.00  ≥ 16  ≥ 16 0 0

CEF/TAZ 0 0  > 256  > 256 3 100.00 1.5 4 3 27.27

PTZ 0 0  ≥ 128/4  ≥ 128/4 0 0.00  ≥ 128/4  ≥ 128/4 0 0

Table 3  Susceptibility antimicrobial against A. baumannii complex

AK Amikacin, GN Gentamicin, CIP Ciprofloxacin, SXT Trimethoprim/sulfamethoxazole, COL Colistin, CAZ Ceftazidime, FEP Cefepime, IMP Imipenem, MER Meropenem, 
PTZ Piperacillin/tazobactam, SAM Ampicillin/sulbactam
a 6 isolates tested
b 14 isolates tested ± 20 isolates tested

A.baumannii complex blaOXA23 n = 8 A.baumannii complex blaOXA24/40 n = 16 A. baumannii 
complex n = 24

Susceptible Susceptible Susceptible

Antimicrobials No % MIC50 µg/ml MIC90 µg/ml No % MIC50 µg/ml MIC90 µg/ml No %

AK 0 0.00  ≥ 64  ≥ 64 0 0.00  ≥ 64  ≥ 64 0 0

GN 0 0.00  ≥ 64  ≥ 64 0 0.00  ≥ 64  ≥ 64 0 0

CIP 0 0.00  ≥ 4  ≥ 4 0 0.00  ≥ 4  ≥ 4 0 0

SXT 0 0.00 4/76 4/76 0 0.00 4/76 4/76 0 0

COL 6a 100.00 1 1 13b 92.86 1 1 19 ±  95

CAZ 2 25.00  ≥ 64  ≥ 64 2 12.50  ≥ 64  ≥ 64 4 18.18

FEP 0 0.00  ≥ 32  ≥ 32 0 0.00 16  ≥ 32 0 0

IMP 0 0.00  ≥ 16  ≥ 16 0 0.00  ≥ 16  ≥ 16 0 0

MERO 0 0.00  ≥ 16  ≥ 16 0 0.00  ≥ 16  ≥ 16 0 0

PTZ 0 0.00  ≥ 128/4  ≥ 128/4 0 0.00  ≥ 128/4  ≥ 128/4 0 0

SAM 0 0.00  ≥ 32/16  ≥ 32/16 2 12.50  ≥ 32/16  ≥ 32/16 2 8.33
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we did not find any P. rettgeri isolates harbouring this 
gene because this species has been shown to play a cen-
tral role in the dissemination of blaNDM in Latin America, 
but infections by P. rettgeri are not very common [24]. 
Similar to other studies, we found blaOXA-48 only in E. 
coli, which is the main species associated with this gene 
[25, 26].

The pattern observed in Ecuador is different from that 
described in other countries, such as India, where NDM 
is prevalent, or Turkey, where OXA-48 dominates among 
CRE [26, 27].

During the COVID-19 pandemic, an increase in car-
bapenemase-producing Enterobacterales was observed; 
moreover, the emergence of isolates harbouring more 
than one carbapenemase gene was reported [28]. In 2021, 
Ecuador reported blaKPC + blaNDM and blaKPC + blaOXA-48 
associations [28, 29]. Nevertheless, we did not find any 
combinations of carbapenemase genes in any of the iso-
lates studied.

Co-resistance to aminoglycosides and fluoroquinolo-
nes was observed in K. pneumoniae blaKPC-positive iso-
lates. This association has also been described by several 
authors and is linked to horizontal dissemination [30, 31]. 
Genetic diversity was revealed in our isolates, suggesting 
horizontal dissemination. Interestingly, our results differ 
from those of previous research in which clonal circula-
tion of K. pneumoniae blaKPC-positive isolates was docu-
mented [18]. The differences found could be attributed to 
the fact that our study was not limited to one city or hos-
pital area, such as intensive care units, where most other 
research is focused.

According to our results, tigecycline could be consid-
ered a therapeutic alternative for Enterobacterales iso-
lates, independent of carbapenemase genes or the species 
involved, but its use will require a previous antimicrobial 
susceptibility report, as other authors have also suggested 
[32].

Enterobacterales harbouring blaKPC showed reduced 
susceptibility to colistin, but surprisingly, all isolates har-
bouring blaNDM remained susceptible to colistin, con-
trary to the findings of other authors, who described an 
increase in colistin resistance in CRE isolates harbour-
ing blaNDM [33]. Based on our findings, colistin may be 
considered a significant therapeutic option for the treat-
ment of CRE, but a prior susceptibility report may be 
needed. The mcr-1 gene was not detected in any of our 
isolates, in contrast with the results of other Latin Ameri-
can studies [34–36], suggesting that resistance could be 
mediated by chromosomal mutations or other mcr vari-
ants that were not studied and have been described in the 
region, including mcr-3 or mcr-5  [37–39]. Further stud-
ies are needed to understand the resistance mechanisms 
involved in colistin resistance.

New antimicrobial agents, such as ceftazidime/avi-
bactam and meropenem/vaborbactam, demonstrated 
complete susceptibility in all the blaKPC-positive isolates. 
Despite the susceptibility patterns reported by several 
authors, the emergence of KPC isolates with ceftazidime/
avibactam resistance has been reported, which has been 
frequently associated with mutations leading to substitu-
tions in the Ω-loop of the KPC-3 variant [40, 41]. Fortu-
nately, our research did not show any resistance to this 
new antimicrobial in KPC isolates, perhaps due to the 
recent introduction of this antimicrobial (June 2022) in 
Ecuador, although some cases of CAZ/AVI resistance 
have been reported prior to drug introduction in other 
countries through a salt bridge between glutamic 197 and 
arginine 164 in the wild-type KPC enzyme; however, this 
result was not found in this study [42].

Carbapenemase production by the blaVIM gene was 
detected in 63.63% of P. aeruginosa isolates, and this 
gene encodes a metallo-β-lactamase. Our findings are 
consistent with several other authors who determined 
that this gene was prevalent [43]. P. aeruginosa exhibited 
high rates of co-resistance to aminoglycosides, cipro-
floxacin, colistin and ceftolozane/tazobactam, rendering 
these antimicrobials ineffective for empirical treatment. 
Our findings differ from those of other authors who 
recommended ceftolozane/tazobactam as an effective 
treatment for multidrug-resistant P. aeruginosa [44]. In 
contrast to our findings, Ajila et  al. reported good sus-
ceptibility to ceftolozane/tazobactam in P. aeruginosa 
isolates recovered in 2019 in Ecuador [45]. We attributed 
these conflicting findings to the molecular mechanisms 
involved in the studied isolates, but these hypotheses 
were not described by the authors.

In America, carbapenem resistance in A. baumannii 
complex isolates is principally mediated by oxacillinases, 
particularly blaOXA-23 and blaOXA-58 [46, 47]. In 2016, 
Nuñez-Quezada et al. reported an outbreak of a carbap-
enem-resistant A. baumannii complex with blaOXA-72, a 
member of the blaOXA-24/40 subgroup, in Guayaquil, Ecua-
dor [48]. Our research revealed that blaOXA-24/40 (66.66%) 
was predominant in A. baumannii complex isolates, 
similar to the results of a previous report in our country; 
furthermore, the same PCR pattern was observed in 50% 
of the isolates, which indicates the clonal spread of this 
microorganism, as has been previously reported [48].

Nevertheless, our results differ from those published 
in a national surveillance report, which showed a pre-
dominance of OXA-23 in A. baumannii complex isolates 
collected from 2019 to 2021. However, an increase in 
OXA-24/40 was observed in 2021, with similar values to 
those of OXA-23 (blaOXA-23 n = 129; blaOXA-24/40 n = 116). 
In addition, we did not detect blaOXA-58 in our isolates, 
although it has been reported previously in Ecuador [23]. 
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Our results also differ from the regional epidemiology 
[49], where the blaOXA-24/40 gene has been described only 
sporadically and is mainly reported in countries such as 
Taiwan, China and South Korea in Asia [50, 51].

Co-resistance to other groups of drugs is highly com-
mon in A. baumannii complex isolates, and this co-
resistance reduces the number of therapeutic options. 
The extensive drug resistance (XDR) phenotype was 
independent of the oxacillinase gene. The isolates only 
showed 100% susceptibility to colistin, and colistin could 
be considered a last resort option for these XDR isolates.

This study has several limitations. First, our results 
could not be generalized to primary care hospitals or 
other cities as the hospitals were not randomly selected; 
instead, they included hospitals from public and private 
services from the second and third levels of attention 
in Ecuador´s most populous cities. Second, clinical iso-
lates of carbapenem-resistant gram-negative bacilli were 
selected by each microbiology laboratory according to 
their protocols and clinical requests for culture by physi-
cians; therefore, some isolates were not included. Third, 
the sensitivity and specificity of the mCIM method are 
greater than 90%, although there could be false-negative 
results due to uncommon carbapenemase types that were 
not tested in our study [52]. Finally, blaOXA143, which is 
an oxacillinase previously described in A. baumannii in 
Ecuador, has not been examined.

In conclusion, the epidemiology of carbapenem 
resistance in the three most important cities of Ecua-
dor (Quito, Guayaquil, and Cuenca) was dominated by 
carbapenemase-producing K. pneumoniae harbouring 
blaKPC. Additionally, XDR P. aeruginosa and A. bau-
mannii complex isolates were also present, showing 
an urgent need to implement strategies to reduce their 
dissemination.
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