
Tannous et al. BMC Infectious Diseases          (2022) 22:322  
https://doi.org/10.1186/s12879-022-07147-2

DATABASE

SARS‑CoV‑2 historical global testing 
and genomic variability
Halim Tannous1†, Shadi Akiki2†, Rasha E. Boulos3†, Charlene El Khoury Eid3, Ghadi El Hasbani3, 
Lea Maria Khoueiry3, Lynn El Khoury3, Rawan Tohme3, Rim Moussa3 and Georges Khazen1,3*   

Abstract 

The world has been dealing with the SARS-COV-2 pandemic since December 2019 and a lot of effort has focused on 
tracking the spread of the virus by gathering information regarding testing statistics and generating viral genomic 
sequences. Unfortunately, there is neither a single comprehensive resource with global historical testing data nor a 
centralized database with summary statistics of the identified genomic variants. We merged different pre-aggregated 
historical testing data and complemented them with our manually extracted ones, which consist of 6852 historical 
test statistics from 76 countries/states unreported in any other dataset, at the date of submission, making our dataset 
the most comprehensive to date. We also analyzed all publicly deposited SARS-CoV-2 genomic sequences in GISAID 
and annotated their variants. Both datasets can be accessed through our interactive dashboard which also provides 
important insights on different outbreak trends across countries and states. The dashboard is available at https://​
bioin​fo.​lau.​edu.​lb/​gkhaz​en/​covid​19. A daily updated version of the datasets can be downloaded from github.com/
KhazenLab/covid19-data.
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Background
A novel coronavirus, SARS-Cov-2 first appeared in 
Wuhan, China in December 2019 and the World Health 
Organization declared it as a global pandemic on March 
11, 2020. Since the start of this pandemic, a lot of effort 
has focused on gathering different outbreak metrics such 
as confirmed-cases, fatalities and testing statistics. We 
can list here most notably: Our World in Data (OWID) 
[1], Johns Hopkins University (JHU) [2], Covid Track-
ing Project (CTP) (covidtracking.com), Wikipedia (wiki-
pedia.org/wiki/COVID-19_testing) and Worldometers 
(worldometers.info/coronavirus).

Unfortunately, the majority of the platforms shar-
ing historical testing statistics lack substantial amounts 
of data. For instance, CTP focuses only on the number 
of tests per state in the United States of America, while 
OWID aggregates data, by country only and not states, 
from multiple sources. However, at the date of submis-
sion, OWID, which is considered one of the most com-
prehensive platforms for testing data, covered only 94 
countries out of the 195 (ourworldindata.org/coronavi-
rus-testing) and had only partial testing data for some 
countries.

Consequently, we manually extracted historical testing 
data (LAU manual subset) from different sources, and 
combined it with these pre-aggregated datasets.

Although different national mitigation measures can 
lead to different outbreak metrics, it is crucial to look at 
the genomic variability of the virus across different spa-
tiotemporal points. Mutations are known to occur both 
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naturally and frequently in viruses, but might result in 
an increased pathogenicity, virulence and even resist-
ance [3]. In fact, the analysis of the genomic variability 
of SARS-CoV-2 revealed a high occurrence in structural 
genes [4, 5]. The majority of these studies were conducted 
on a relatively small number of samples. Our belief is that 
a more comprehensive and integrative genomic vari-
ability study will help better understand the differences 
in the virus outbreak severity. Therefore, we regularly 
analyze the SARS-CoV-2 genomic sequences depos-
ited in GISAID [6] and share the identified variants as 
well as their consequence annotations with the scientific 
community.

In this paper, we present both a testing numbers data-
set and a genomic variability dataset to help the scientific 
community and the decision makers in their effort to 
fight against Sars-CoV-2. In addition, we present an anal-
ysis of the testing and confirmed cases data to elaborate 
on the trends of Sars-CoV-2 for each country. The rest of 
the paper is structured as follows. The “Construction and 
content” section presents the data collection, validation 
and processing for both the testing and genomic vari-
ability datasets and presents the dashboard developed to 
highlight the datasets. The “Utility and Discussion” sec-
tion highlights the utility of our testing data analysis. The 
final section “Conclusion” concludes the paper.

Construction and content
Global testing data
Testing data collection
We initially collect the number of cases and fatalities 
from JHU (github.com/CSSEGISandData/COVID-19). 
This represents our basis for data collection and speci-
fies the countries we will be gathering testing data for. 
We assemble historical testing data from 4 major sources: 
OWID, CTP, Worldometers and Wikipedia. We store a 
daily snapshot of Worldometers and Wikipedia pages, 
since they are overridden daily. Countries unreported 
in these 4 sources are then identified and ranked in 
descending order based on their respective cumulative 
numbers of cases from JHU, and assigned for manual col-
lection. We then traceback the historical testing numbers 
from the 4 sources and identify the days with missing 
data.

We try to collect as many missing historical testing 
data points as possible from different sources, which are 
listed in Additional file 1: Table S1 for each country/state. 
The table consists of 7 fields: Country/State, First Data 
Point, Last Data Point, Language, Data Type, Test Type 
reported and the Source reference.

The “First Data Point” field indicates the date of the 
first data point that we manually collected.

The “Last Data Point” field indicates the date of the last 
data point that we manually collected. Usually, if other 
sources (such as OWID) start covering a country, we stop 
collecting data points manually unless to fill critical gaps 
in OWID data.

The “Language” field indicates the language using 
which the collected data is represented. Any lan-
guage other than English/ French and Arabic are 
translated using the Google chrome extension tool, 
or using other translation websites (itools.com/tool/
google-translate-web-page-translator).

The “Data Type” field indicates the format of the data 
(API: application programming interface, Infographic: 
uploaded data that gets overridden daily, Daily reports, 
News reports, Graphs and Machine readable datasets).

The “Test Type Reported” field indicates the method 
used for testing PCR, serological or unspecified.

Some of these listed sources show historical data, while 
others report the testing numbers on the current day and 
override the webpage information daily. As a solution, we 
use the wayback machine (archive.org/web/) to navigate 
back to older versions.

After manually collecting testing data, we merge all the 
testing datasets together, including our LAU manual sub-
set, into one comprehensive historical dataset.

Testing data validation
We run the data collection pipeline on a daily basis and 
re-validate the data based on the following criteria:

(1)	 If there are inconsistencies between the number of 
tests and the reported cases in one of the resources, 
then only testing data higher than the number of 
reported cases is considered.

(2)	 In the case of overlap, daily testing data are chosen 
from only one source and prioritized as follows: 
OWID, CTP, LAU manual subset, Wikipedia, Worl-
dometers. We put Worldometers last because they 
do not provide a date for their collected numbers.

It is worthwhile noting that with every new run, the 
sources used might update their previous historical data 
which might result in new redundancies. Whenever this 
situation is presented, criteria 1 and 2 will resolve any 
inconsistency or duplication in the data.

We validate the gathered data to eliminate illogical test 
numbers. We look for three main issues in the gathered 
data: decreasing numbers of cumulative confirmed cases, 
decreasing numbers of cumulative tests, daily number 
of daily tests less than daily cases. If these cases are pre-
sented for a certain country/state at a certain date, we 
eliminate the conflicting testing number. Until 2020-09-
01, the number of testing data points dropped is 4742, of 
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which 2075 were due to decreasing numbers of cumula-
tive tests and 2667 due to daily tests less than daily cases. 
The number of confirmed cases dropped from the JHU 
dataset is 128 due to decreasing cumulative cases.

Contribution to the comprehensive dataset by source 
(at the date of submission) is presented in Table 1. Our 
manually extracted data accounts for 21% (6852) of our 
dataset and covers 74 country/state pairs, of which 49 
have less than 25% date coverage in any of the four ini-
tial sources at the date of submission (Fig. 1). Finally, we 
validate our gathered data and perform data cleaning to 
eliminate illogical entries.

Testing data post‑processing
We post-process the data in order to properly visualize 
it on our dashboard and to conduct our testing analysis. 
The post-processing involves the replacement of missing 
testing numbers; which can be either on the last collec-
tion date or on a previous date, and a spike easing step. 
For the last collection date we use an extension approach 
and for the previous dates we use an interpolation 
approach. These 2 steps are conducted for visual pur-
poses, and will also be used when computing our met-
rics and when conducting our testing analysis. They do 
not contribute to the numbers represented in Additional 
file 1: Table S1 and Table 1.

Extension approach: replaces the missing testing 
data on the last collection date. The number of tests are 
extended in order to account for the global cumulative 
number of tests. For instance, when our dataset reaches 
2020-05-18, France’s testing data points stop at 1,384,633 
cumulative tests on 2020-05-08. Hence without extend-
ing these data points to reach 2020-05-18, this would lead 
to a decrease in the number of global cumulative tests on 
2020-05-09 by the same value. To extend the latest miss-
ing numbers of tests, we compute the daily positive cases 
for the missing days, and add these values to the latest 
available number of tests. This results in the extension 
of the numbers of tests using only confirmed cases. This, 
however, assumes that the number of negative tests per 
day is null.

Interpolation approach: replaces missing testing data 
between known test number values. There are some con-
straints here that should be taken into consideration. For 
instance, the daily number of tests should not be lower 

than the daily positive cases. For this reason, we use 
Eq.  (3) below to replace the missing testing data points. 
Assuming that two data points are separated by missing 
cumulative test number values, and that the two data 
points have known cumulative tests and cumulative case 
number (all numbers below represent cumulative num-
bers) we compute the following:

where N is the number of days between the first and last 
available test point, and i represents the number of days 
for which the test number is estimated (i varies between 
0 and N − 1).

An example is given in Table 2. In this example, linear 
interpolation causes no issue when comparing linearly-
interpolated cumulative tests with cumulative cases. 
However, the linearly-interpolated daily tests present 
an issue on day 3 and day 4 where daily tests are lower 

(1)Translation factor
(

Tf
)

= testsbefore − casesbefore

(2)Scaling factor
(

Sf
)

=
testsafter − casesafter + Tf

casesafter + Tf

(3)

Tests[i] = floor

[

(

cases[i]+ Tf
)

∗
(

1+ Sf
)

∗
i

N − 1

]

Table 1  Dataset contribution by source

OWID CTP LAU 
Manual 
Subset

Worldometers Wikipedia

Data points 12,291 9261 6852 3647 635

(%) 38 28 21 11 2

Fig. 1  Number of countries/states covered per day by each data 
source in our dataset

Table 2  Interpolation example

a Violation of the condition daily tests > daily cases

Day 1 Day 2 Day 3 Day 4

Cumulative cases 2 3 20 40

Daily cases 2 1 17 20

Cumulative tests 10 NA NA 50

Linearly-interpolated cumulative tests 10 23 36 50

Linearly-interpolated daily tests 10 13 13A 14a

Our method cumulative tests 10 11 28 50

Our method daily tests 10 1 17 22
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than daily cases. Applying our algorithm, we achieved 
estimated numbers of tests that do not violate any of the 
aforementioned conditions.

Spike easing approach: Another aspect of our data post-
processing concentrates on cases where countries spon-
taneously add new testing information from additional 
laboratories without correcting the full cumulative his-
tory, which could lead to sudden spikes in the testing 
data. To account for these discontinuities, we smooth 
out large spikes into smaller jumps, spread over the pre-
vious few days. For example, Austria’s cumulative tests 
have the following progression from 2020-03-31 until 
2020-04-02: 5200, 5600, 9200 (Fig.  2). Clearly, the jump 
to 9200 on 2020-04-02 is not in line with the daily num-
bers seen before, so the 3600 (9200–5600) are distributed 
linearly over all days from the date of the first case, i.e. 
the beginning of March until April 2, thus raising the 
curve before the jump and avoiding the spike. This spike 

Translation factor
(

Tf
)

= 10− 2 = 8

Scaling factor
(

Sf
)

=
50− 40− 8

40+ 8
=

2

48

easing method yields less false alarms when calculating 
the significance of change in the number of positive cases 
described in the methods section.

The extension, interpolation and spike easing 
approaches are represented, in white, to the end user 
on the dashboard, and are used to analyse our testing 
metrics.

SARS‑CoV‑2 genomic sequences
Genomics variability data collection
The viral genomic sequences are downloaded from 
GISAID and processed on a weekly basis. Only com-
plete or near complete genomes (length > 29,000) are 
compared to the first reported sequence from Wuhan, 
China (Accession number: EPI_ISL_402125) using 
Mummer version 3.1 [7] with default parameters. The 
identified variants are functionally annotated using 
snpEff [8] with default parameters using NC_045512.2 
as a reference. Annotations of the reference genome 
are downloaded from GenBank [9] (NCBI Reference 
Sequence:NC_045512.2).

Fig. 2  Number of cumulative tests in Austria: left is the original data, middle is interpolated, and right is after spike easing
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Genomic variability data validation
The genomic variability pipeline is run on a weekly basis 
to detect mutations and get their consequence annota-
tions. 92 354 sequences from 156 countries or territories 
were analyzed until the date of submission. The analysis 
resulted in 166 sequences without any mutation (SNPs, 
insertions/deletions, breakpoint, relocation, transloca-
tion, inversion). A total of 25 223 unique SNPs was iden-
tified. While some occur frequently in the dataset others 
only appear one time, but the majority correspond to 
missense (57.77%) and synonymous (29.46%). Consist-
ently, similarly to previous studies we observe a higher 
diversity in the genes N, S, ORF3A and ORF8 [4, 5, 10, 
11]. Interestingly, those same genes present the highest 
missenses mutations relative to the synonymous ones.

The most common variant, 23403A > G-(D614G), 
observed 73,070 times and commonly found in the 
USA, Australia and European countries, is the same 
as the one described as a potential drift and a threat 
for vaccine development [5]. Interestingly, this vari-
ant did not occur alone, it co-exists with 241C > T (in 5′ 
UTR), 3037C > T-(F105F) and 14408C > T-(P323L). We 
also observed a striking co-occurrence phenomena of 
28144T > C-(L84S) and 8782C > T-(S57S), similar to the 
observation of other study [12].

Dashboard
The dashboard is developed using ESRI (esri.com), Shiny 
(shiny.rstudio.com) and Bokeh (bokeh.org), and is divided 
into two sections: “Global Testing” and “Genomic Vari-
ability”. The Global Testing section includes four parts:

Interactive map: provides a global view of the cumu-
lative tests/million and confirmed-cases/tests as well as 
two distribution plots of the daily confirmed-cases and 
number of tests.

Summary statistics: provides a graphical representation 
of the different daily and cumulative outbreak metrics 
both globally and by country/state.

Comparative statistics: compares the metrics listed in 
the “Metrics extraction” section below between a maxi-
mum of 10 different countries/states.

Trends: summarizes the rate of change of testing and 
confirmed-cases per country and provides the expected 
minimum and maximum number of cases expected to 
detect a significant change in the number of confirmed-
cases per country. Details about this information is pre-
sented in the “Testing and confirmed-cases analysis” 
section below.

The Genomic Variability page summarizes the average 
number of mutations per 1 kb in each gene, within each 
country and sample. It also provides their relative fre-
quencies per gene and consequence types.

Utility and discussion
Testing data analysis
Metrics extraction
We compute six daily and six cumulative statistics 
for each country/state: total tests, negative tests, con-
firmed-cases, tests/million, tests/confirmed-cases and 
confirmed-cases/tests.

Testing and confirmed‑cases analysis
In order to compute a country’s testing and confirmed 
cases trends, we start by calculating the last week’s rate 
of change in testing and confirmed-cases for each coun-
try using a 7-day moving average. We disregard countries 
that have not updated their testing data over the past 
3 days. These numbers would give a first impression at a 
country’s strategy when dealing with SARS-CoV-2 (e.g. 
is the country’s testing ratio higher than the confirmed 
cases ratio over the past week). However, this alone does 
not help us conclude on the country’s situation.

For this reason, we also compute the 7-day moving 
average of the number of cases for the last 14  days and 
use the chi-squared test to check if there is a significant 
increase or decrease in the number of cases between the 
current (Week 2) and previous week (Week 1). Addition-
ally, using the graphical method from Bolles et  al. [13], 
we compute the minimum and maximum number of 
7-day average of cases needed per day to detect either a 
significant increase or decrease in the number of cases 
with a 95% confidence level. The Bolles et  al. graphi-
cal method yields an ellipse with the x-axis representing 
the number of negative test results, and the y-axis repre-
senting the number of positive test results. The ellipse’s 
boundary represents the minimum and maximum num-
ber of positive cases allowed given a certain number of 
negative cases such that there is no significant change in 
the number of cases at a p-value of 5%, Fig. 3A illustrates 
the cumulative tests and cases interpretation. In fact, if 
the observed number is outside the ellipse boundary, the 
change in the number of cases is then considered to be 
significant, above the boundary indicates a significant 
increase while below it indicates a significant decrease.

Figure  3B shows an example of this analysis, repre-
sented to the end-user on our dashboard. This particu-
lar example is that of ’’Lebanon’’. The figure highlights the 
7-day average positive cases (red dots) recorded during 
the period starting from 2020-01-22 until 2020-09-01, 
compared to the 14-day expectation range generated as a 
result of the chi-square test (grey range).

Dataset utility in the fight against SARS‑COV‑2
The dataset will prove to be a very useful tool in the 
fight against SARS-CoV-2. First, the testing dataset is 
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the most comprehensive dataset pertaining to histori-
cal testing numbers of SASRS-CoV-2, available online 
for researchers to use. In addition, we present a vali-
dated dataset that does not contain erroneous elements 
that could affect future analysis. Moreover, this dataset 
also presents interpolated data points, for missing test-
ing data, that are logically interpolated.

On the other hand, the genomics dataset presents an 
important advantage as it directly presents ready to use 
data, helping researchers skip the tedious tasks of pre-
paring their dataset before using it.

Finally, the major advantage presented is the regular 
dynamic update that we provide to our datasets. This 
would allow researchers to implement their codes and 
analysis without the need to update the data constantly.

Conclusion
In this paper, we present our comprehensive testing 
and genomic variability datasets for SARS-CoV-2. The 
datasets presented are validated, post-processed and 
made available to the researchers online. In addition, 
we present an analysis of testing and confirmed cases 
trends for different countries. We also present our 
online dashboard developed to monitor the progress of 
the virus through testing metrics and genomic variabil-
ity analysis. We believe that our work will be crucial in 
monitoring the progress of SARS-CoV-2 in the attempt 
to end the pandemic.

Abbreviations
SARS-Cov-2: Sever acute respiratory syndrome coronavirus 2; Covid19: Corona-
virus disease of 2019; OWID: Our World in Data; JHU: Johns Hopkins University; 
CTP: Covid Tracking Project (CTP); LAU: Lebanese American University; API: 
Application Programming Interface; PCR: Polymerase chain reaction; SNP: 
Single nucleotide polymorphism.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12879-​022-​07147-2.

Additional file 1: Table S1. The table provides a listing of all the resources 
used to collect missing historical testing data points. It consists of 7 
columns: Country/State, First Data Point, Last Data Point, Language, 
Data Type, Test Type reported and the Source reference. The “First Data 
Point” and “Last Data Point” columns indicate the date of the first and 
last manually collected data points, respectively. The “Language” column 
indicates the original language of the resource. The “Data Type” column 
indicates the format of the data (API: application programming interface, 
Infographic: uploaded data that gets overridden daily, Daily reports, News 
reports, Graphs and Machine readable datasets). The “Test Type Reported” 
column indicates the method used to test for SARS-CoV-2: PCR, serological 
or unspecified. The “Source” provides the URL to the resource used.

Acknowledgements
The authors do not claim ownership of the sequences used in the workflow of 
the analysis. We gratefully acknowledge the authors, originating and submit-
ting laboratories of the sequences from GISAID’s EpiFlu™ Database on which 
this research is based. We also acknowledge the authors of all Coronaviridae 
genome sequences deposited in GenBank. The authors declare that the data 
is shared in agreement with the respective sources. OWID, JHU and CTP data 
are under “Creative Commons CC BY-NC-4.0 license” which allows users to 
share and redistribute their material. The analysis was done on open access 
data from Worldometers that was used in similar research. Only a part of the 
genomic data is shared after obtaining the GISAID initiative consent.

Authors’ contributions
HT and SA identified available datasets as well as missing country data and 
implemented the covid19 historical testing data aggregation pipeline; they 
developed the dashboard interface, computed all metrics and trends data, 
and co-authored the manuscript. REB implemented the covid19 genomics 
analysis pipeline, and co-authored the manuscript. CEKE, LMK, RT, LEK and 
GEH handle the daily update of the covid19 testing data pipeline and the 
manual identification of missing data from online resources. RM handles the 
weekly update of the covid19 genomics data. GK conceived, designed and 
supervised the project; and co-authored the manuscript. All authors reviewed 
and approved the manuscript.

Funding
None to declare.

Fig. 3  A An illustration of the graphical method. This specific example shows the case where the observed number of positive cases for week 2 
(current week) is significantly less than that from week 1 (previous week). B 7-day Moving average of the positive cases (red) vs the range of the 
14-day expectation (grey)

https://doi.org/10.1186/s12879-022-07147-2
https://doi.org/10.1186/s12879-022-07147-2


Page 7 of 7Tannous et al. BMC Infectious Diseases          (2022) 22:322 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Availability of data and materials
A dynamically updated version of our dataset can be downloaded from 
github (https://​github.​com/​Khaze​nLab/​covid​19-​data) in CSV format. For the 
historical testing data statistics, each row represents a single day in a country 
or state/province. The fields are: CountryProv—Name of country or province 
in which the tests are reported. In cases of provinces, this field is a concat-
enation of country name with province name with a dash, e.g. “Australia—
Queensland”. date—date on which the tests were done, in yyyy-mm-dd 
format. total_cumul.all—Cumulative number of tests done. total_cumul.
source—Name of the source from which this row is obtained. Its value can be 
one of “owid”, “covidtracking”, “lau”, “wiki”, “worldometers”. interpolated—Yes/
No field, “no” being for raw data, “yes” being for dates on which the number 
of tests is obtained from interpolation/extension of raw data. The genomic 
dataset summarizes the mutations found in each sample. Each row cor-
responds to an identified mutation in a sample and the columns correspond 
to the following: country—specifies the country the sample with identified 
mutation belongs to. date—indicates the collection date of the sample in 
a year-week format (i.e. 2020-3). mutation—position, reference nucleotide, 
query nucleotide. gene—the name of the gene in which the mutation is 
detected. consequence—the consequence type of the mutation. Mutation 
consequences can vary from (i) modifier such as upstream or downstream 
gene, (ii) low impact effect like synonymous mutation, (iii) moderate impact 
such as missense, and (iv) high impact such as frameshift, start or stop lost or 
gained. Finally, a mutation can be a splice region variant that can be of a low 
or moderate impact.
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