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Abstract
Background: Epidemiological analyses indicate that the age distribution of natural cases of transmissible spongiform
encephalopathies (TSEs) reflect age-related risk of infection, however, the underlying mechanisms remain poorly understood.
Using a comparative approach, we tested the hypothesis that, there is a significant correlation between risk of infection for
scrapie, bovine spongiform encephalopathy (BSE) and variant CJD (vCJD), and the development of lymphoid tissue in the gut.

Methods: Using anatomical data and estimates of risk of infection in mathematical models (which included results from
previously published studies) for sheep, cattle and humans, we calculated the Spearman's rank correlation coefficient, rs, between
available measures of Peyer's patch (PP) development and the estimated risk of infection for an individual of the corresponding
age.

Results: There was a significant correlation between the measures of PP development and the estimated risk of TSE infection;
the two age-related distributions peaked in the same age groups. This result was obtained for each of the three host species:
for sheep, surface area of ileal PP tissue vs risk of infection, rs = 0.913 (n = 19, P < 0.001), and lymphoid follicle density vs risk
of infection, rs = 0.933 (n = 19, P < 0.001); for cattle, weight of PP tissue vs risk of infection, rs = 0.693 (n = 94, P < 0.001); and
for humans, number of PPs vs risk of infection, rs = 0.384 (n = 46, P = 0.008). In addition, when changes in exposure associated
with BSE-contaminated meat were accounted for, the two age-related patterns for humans remained concordant: rs = 0.360 (n
= 46, P = 0.014).

Conclusion: Our findings suggest that, for sheep, cattle and humans alike there is an association between PP development (or
a correlate of PP development) and susceptibility to natural TSE infection. This association may explain changes in susceptibility
with host age, and differences in the age-susceptibility relationship between host species.
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Background
The incidence of natural cases of transmissible spongi-
form encephalopathies (TSEs) or prion diseases is related
to age: scrapie incidence in sheep typically peaks between
2 and 3 years of age [1], bovine spongiform encephalopa-
thy (BSE) incidence in cattle peaks at around 5 to 7 years
of age [2] and variant Creutzfeldt-Jakob disease (vCJD)
incidence in humans peaks at 25 to 30 years [3]. Age-
related patterns in incidence will reflect the incubation
period of the disease (typically long relative to host life
expectancy), the magnitude of the risk of infection and
any age dependency in the risk of infection. Analyses of
epidemiological data for scrapie [4], BSE [5] and vCJD [6]
have suggested that there is significant age dependency in
the risk of infection for all these TSEs. Available evidence
suggests that these patterns cannot be fully accounted for
by changes in exposure, in which case changes in suscep-
tibility must also play a role. However, to date, there has
been no indication of why susceptibility might change
with age.

Age dependency in the risk of infection by TSEs will reflect
any age dependency in exposure to infection and/or in
susceptibility to infection for a given level of exposure.
Both of these are likely to be linked to the route of trans-
mission. Although other transmission routes may exist
(see below), oral exposure appears to be the most impor-
tant route of transmission for natural TSE infections in
sheep, cattle, deer and mink and for vCJD and kuru in
humans [1,3,7-9]. There is evidence for the involvement
of Peyer's patches (PPs), part of the gut-associated lym-
phoid tissue (GALT), in orally transmitted TSE infection.
Experimental studies in cattle have demonstrated staining
for PrPSc (the abnormal prion protein) in PP follicles in
the distal ileum throughout much of the course of the dis-
ease following oral exposure to the BSE agent [7]. In
sheep, oral infection with scrapie is thought to occur
mainly via the ileal PP, followed by replication in GALT
[8]. In mule deer fawns, lymphoid follicles of PPs have
been shown to accumulate PrPSc within a few weeks fol-
lowing oral exposure to chronic wasting disease (CWD)
[9]. After oral infection of nonhuman primates with BSE-
infected material, PrPSc is initially detected in PPs [10]. In
experimental infections, mice deficient in both tumour
necrosis factor and lymphotoxin or in lymphocytes, in
which PPs are decreased in number, are highly resistant to
oral challenge and their intestines are virtually devoid of
infectivity at all times post-challenge [11]. These facts col-
lectively suggest a key role for PPs in the infection dynam-
ics of a range of TSEs.

Early presence of PrPSc in mouse PPs after oral exposure to
scrapie [12] has indicated these structures as being the
most probable sites for the intestinal uptake of the TSE
agent. Various cell types present in this lymphoid tissue

have been implicated as important elements in the uptake
and propagation of the infectious agent. PrPSc staining in
the follicular dendritic cells of patients with vCJD [13]
and of sheep naturally infected with scrapie [14], as well
as staining associated with the luminal border of cells in
the follicle-associated epithelium (FAE) of sheep suggest
uptake of the TSE agent from the intestinal lumen to the
underlying lymphoid tissue [8]. Although important
functional differences exist between PP in sheep ileum
and those in the duodenum and jejunum, the FAE overly-
ing jejunal and ileal PPs has an efficient mechanism for
the transcytosis of luminal material [15,16], including
prion proteins, to the underlying lymphoid tissue.

The development of GALT is known to be related to age.
In young sheep, cattle and humans, ileal PPs are the major
component of GALT possessing an extensive bed of follic-
ular dendritic cells and follicle-associated epithelium. The
involution of ileal PPs occurs at around puberty in sheep,
cattle and humans [17-19]. However, the age-related
changes in PP development are not identical across these
three species, providing an opportunity for a comparative
study. Our hypothesis is that although the relationships
between PP development and age and between suscepti-
bility to TSE infection and age differ in sheep, cattle and
humans, there should still be a correlation between PP
development and susceptibility for each species.

Methods
Anatomical studies
Specimens of ileum were collected from 19 sheep of dif-
ferent ages (0–1 year, 1–2 years and >2 years) from a flock
of Cheviot sheep maintained by the Institute of Animal
Health Neuropathogenesis Unit (NPU) [20]. The study
was limited to animals with no clinical or pathological
evidence of intestinal disease. Specimens were obtained
from sheep that were either euthanized because of severe
arthritis in one or more limbs, died shortly after birth or
were culled for flock management reasons. The specimens
were opened along their mesenteric borders, and rinsed in
cold water. PP tissue and lymphoid follicles were visual-
ised by immersing the intestines in 2% acetic acid for 24
hours, and the follicular content of the patches enhanced
by staining with 0.5% methylene blue for 2–5 minutes.
PP tissue and lymphoid follicles were easily visualised
using this technique.

The terminal ileum (distal 0.6 m of the ileum) was transil-
luminated on a horizontal X-ray view box and digital
images were obtained. Image analysis software (Image-
Pro Plus®) was then used to calculate the areas of intestine
and of PP tissue. The area of PP tissue was recorded as a
percentage of the total area of intestinal tissue.
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To determine the number of lymphoid follicles, the
stained intestine was placed between two glass slides, the
upper of which was etched in square centimetres. Individ-
ual lymphoid follicles appeared as bright blue spots
against a faintly blue background when viewed on the X-
ray box. The number of lymphoid follicles in 6 different
sections along the length of the terminal ileum was
counted by naked eye, starting at 5 cm from its caudal end
and selecting 4 cm2 sections at every 10 cm thereon, prox-
imally. Results were recorded as the average number of
lymphoid follicles per cm2 of ileum.

Our results are described in terms of area of PP tissue and
lymphoid follicle density in the sheep ileum; analyses
indicate that these two measures are closely correlated (rs
= 0.958, n = 19, P < 0.001). PP data for cattle and humans
were obtained from earlier studies [18,19]. The studies
used different measures to quantify PP tissue from those
we obtained here for sheep. The cattle data [18] refer to
weight of PP tissue in the small intestine of 94 German
beef cattle. The human data [19] refer to number of PPs in
the normal small intestine of 46 individuals between 15
and 96 years of age. The study was limited to necropsies
performed within a few hours of death, and to patients
with no clinical history or pathological evidence of gas-
trointestinal tract disease. A second, smaller study of
human PPs indicates that, in humans, number of PPs and
area of PP tissue in the distal ileum were correlated across
age classes (r = 0.415, n = 55, P < 0.01) [21]. As far as we
are aware, there are no other quantitative data on PP
development with respect to age available for these spe-
cies but, where direct comparisons are possible, it appears
that the different measures reflect the same underlying
relationship with age.

Scrapie incidence data
The NPU Cheviot flock, a closed flock maintained explic-
itly as a source of natural scrapie infections, has been com-
prehensively documented and demographic information
and epidemiological data on all sheep are available [20].
In this study, analyses were based on data obtained from
an outbreak of scrapie, which spanned the years 1985 to
1994 affecting cohorts born between 1983 and 1992. This
represents a total of 1,473 sheep of which 34 developed
clinical scrapie. In this flock, scrapie occurs in two PrP
genotypes, VRQ/VRQ and VRQ/ARQ [20]. (There is no
evidence that PrP genotype influences PP development).
Further details of the outbreak are given elsewhere [20].

Age-susceptibility functions
The method for calculating the age susceptibility function
for sheep follows that of Boëlle et al. [6] used to derive the
age risk function for vCJD. The occurrence of cases in gen-
otype G sheep is modelled by a Poisson process in the
(age, time) plane with intensity πG(a,t) given by:

where βG is the birth rate and rG is the relative susceptibil-
ity of genotype G individuals, S(a) is the probability of
survival (in the absence of scrapie) until age a, hG is the
probability density function for the incubation period for
genotype G individuals, and λ(a,t) is the per capita rate of
infection for individuals of age a at time t. The expression
sums the contribution to the incidence of infection at age
a and time t from animals infected when at age a', taking
into account the fact that the number of animals available
at age a' to become infected is reduced by those already
infected at age u. The low incidence of scrapie in this flock
[22] permits modelling of the age and timing of cases as a
Poisson process because the course of the outbreak does
not significantly impact on the demography of the suscep-
tible sheep.

The survivorship function S(a) is a Weibull function with
mean age of death of 2.99 years [23]. The incubation
period distribution is a gamma distribution with a mean
of 1.9 years [23]. The birth rate βG is selected to give the
average numbers of sheep of different genotypes born per
year. The per capita rate of infection, λ(a,t) has two parts:
a time dependent component g(t) which is assumed here
to be proportional to an exponential function fitted to the
incidence of infection; and an age-dependent component
f(a) which represents the relative susceptibilities of differ-
ent age classes:

where the maximum value taken by f1 f2 or f3 is equal to 1.
Standard theory on point processes [24], gives the log-
likelihood of the observed age-of-case data to be:

The subscript i denotes actual case data; deaths are known
to occur at age ai and a time ti after the start of the out-
break. Maximum likelihood methods were used to esti-
mate the constant of proportionality, which determines
the magnitude of the per capita rate of infection and the
age-dependent susceptibility function as defined by f1, f2
and f3. We did this for (i) the 34 cases over the 10 year
period assuming no differences between genotypes, and
(ii) for the 28 genotyped cases allowing the 8 VRQ/ARQ
cases to have either a lower susceptibility to infection or
(iii) a longer incubation period than the 20 VRQ/VRQ
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cases. We found that models (ii) and (iii) produced a sig-
nificant improvement in fit at the 95% level over model
(i), but that the shape of the age-dependent susceptibility
function was robust to the choice of model. Results are
shown for model (ii).

For cattle, estimates of risk of BSE infection were made
from n = 158,550 BSE cases in British cattle and were cal-
culated from the cumulative distribution function,
defined by Ferguson et al. [5], corresponding to the age-
exposure/susceptibility curve (fitted using maximum like-
lihood methods).

For humans, estimates of risk of vCJD infection were
obtained from a previous study that comprised n = 129
vCJD cases in British people, and were fitted using maxi-
mum likelihood methods by Boëlle et al. [6].

Concordance between susceptibility data and anatomical 
data
For each combination of anatomical data and risk of
infection estimates we calculated the Spearman's rank cor-
relation coefficient, rs, between the value of the available
measure of PP development (area, weight or number) and
the risk of infection for an individual of the corresponding
age. Sample sizes were n = 19, n = 94 and n = 46 for sheep,
cattle and humans, respectively. Correlation coefficients
were calculated using S-PLUS 2000 for Windows.

Results
For sheep, cattle and humans alike, a strong correlation
was found between risk of TSE infection and the develop-
ment of lymphoid tissue in the gut which can explain
both the relationships between age and disease incidence
within species and differences in this relationship
between species.

For sheep there is a marked fall in both the surface area of
ileal PP tissue and lymphoid follicle density between
approximately 12 and 24 months old, and both measures
remain very low throughout adulthood (Figure 1 and
2(A)). Analysis of data on the incidence of natural scrapie
over a 10 year period in the sheep flock providing the ana-
tomical data indicates that the risk of infection is highest
in the first year of life and is lowest in sheep >2 years old
(Figure 2(A)). The two distributions peak in the same age
class and are highly concordant (see Methods): surface
area of ileal PP tissue vs risk of infection, rs = 0.913 (n =
19, P < 0.001); lymphoid follicle density vs risk of infec-
tion, rs = 0.933 (n = 19, P < 0.001).

For cattle, previous work [18] has shown that the weight
of PP tissue in the small intestine increases in the first year
of life, peaks at 12–18 months old, declines thereafter,
and is low throughout adulthood (Figure 2(B)). Available

Comparison of Peyer's patch lymphoid follicles in the ileum of NPU Cheviot sheep at (A) 4 months, (B) 15 months, and (C) 6 years, using haematoxylin and eosin stainingFigure 1
Comparison of Peyer's patch lymphoid follicles in the ileum 
of NPU Cheviot sheep at (A) 4 months, (B) 15 months, and 
(C) 6 years, using haematoxylin and eosin staining. F, lym-
phoid follicles undergo involution and are fewer in number 
with increasing age; L, intestinal lumen. Bar = 200 µm.
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Comparison of age-related changes in Peyer's patch (PP) development and estimated risk of TSE infection relative to the most susceptible age class, for sheep, cattle and humansFigure 2
Comparison of age-related changes in Peyer's patch (PP) development and estimated risk of TSE infection relative to the most 
susceptible age class, for sheep, cattle and humans. (A) PP areas for n = 19 Cheviot sheep of mixed genotypes in 3 age classes 
(left hand axis, open circles), compared with estimates of risk of scrapie infection relative to the most susceptible age class 
(solid line) (± 50 percentiles-dashed lines) from field data on n = 34 cases in mixed PrP genotype (VRQ/VRQ and VRQ/ARQ) 
Cheviot sheep (see Methods) in the same age classes (right hand axis). (B) PP tissue weight against age for n = 94 cattle (open 
points, data from ref. 18), compared with estimates of risk of BSE infection relative to the most susceptible age class (solid line) 
as a function of age made from n = 158,550 BSE cases in British cattle [5] (C) Numbers of PPs in the small intestine in 8 age 
classes of humans (open circles, data taken from ref. 19), compared with estimates of risk of vCJD infection relative to the 
most susceptible age class (solid line, ± 50 percentiles-dashed lines) from n = 129 vCJD cases in British people for the same age 
classes (redrawn from ref. 6).
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estimates of age-related risk of infection of the British cat-
tle population with BSE up to 1996 (given a mean incuba-
tion period of 5 years; published estimates range from 4.5
to 5.5 years [25]) indicate that the risk is initially low,
peaks at about 12 months, and declines rapidly thereafter
(Figure 2(B)). Again, the two distributions peak at similar
ages and are concordant: rs = 0.693 (n = 94, P < 0.001).

For humans, previous work [19] has shown that the
number of PPs in the small intestine increases during
childhood, peaks at 10–15 years old, and declines thereaf-
ter, although the PPs persist throughout adulthood (Fig-
ure 2(C)). Recent estimates of age-related risk of infection
of the British human population to vCJD [6] indicate that
the risk is initially low, peaks between 5 and 20 years, and
declines thereafter (Figure 2(C)). Here too, the two age-
related patterns are concordant: rs = 0.38 (n = 46, P =
0.008). The same study [6] provides estimates of age-
related susceptibility having allowed for changes in puta-
tive exposure associated with consumption of bovine car-
cass meat (see below). This is also concordant with the
number of PPs: rs = 0.360 (n = 46, P = 0.014). Importantly,
these correlations occur despite the markedly different
patterns of age-related development of GALT in humans
as compared with sheep and cattle.

Discussion
Our results show that, whilst both age-related changes in
the development of PP tissue and estimated risks of TSE
infection differ between sheep, cattle and humans, in each
case the two are associated. However, these results do not
distinguish effects of age-related changes in exposure to
TSE infection from age-related changes in susceptibility.
To make this distinction we need to consider how oral
exposure to TSE infection might change with age for each
species.

For BSE in cattle, epidemiological studies have implicated
meat and bone meal (MBM) containing recycled infected
cattle tissues [26]. MBM used to be incorporated as a pro-
tein source in concentrated feedstuffs and fed to both
calves and adult cattle. However, there is no clear correla-
tion with the estimated age-infection function (Figure
2(B)): almost all calves were exposed to MBM by 6 weeks
of age; exposure then fluctuated up to 24 months old but,
especially for dairy cows, rose again in adulthood [27,28].
This route of BSE transmission is thought now to have
been eliminated by feed production regulations intro-
duced in 1988 and 1996.

For vCJD in humans, the most likely vehicle for exposure
is food products containing BSE-contaminated cattle tis-
sues [29]. Humans consume solid foods from 4–6
months of age with average consumption of bovine car-
cass meat peaking during childhood and tending to fall

thereafter (see Figure 3 in [6]). This route of transmission
is thought now to have been eliminated by food produc-
tion regulations introduced in the UK in 1996. Here, puta-
tive exposure is more closely aligned with PP
development [6] but, as reported above, when age-related
exposure is taken into account, there remains an associa-
tion between PP development and estimated susceptibil-
ity.

For scrapie in sheep, the vehicle(s) of oral exposure are
less well understood, but are likely to include grazing on
pasture contaminated with scrapie, possibly by infected
foetal membranes [30]. Lambs typically begin to graze at
6–14 weeks and continue to do so throughout their lives.
Exposure by this route would not be correlated with the
estimated age-infection function (Figure 2(A)).

The importance of other transmission routes is less clear.
Transmission from mother to offspring in utero or via
breast milk (self-evidently age-dependent) is thought to
play a minor role, if any: currently available estimates of
the fraction of cases due to maternal transmission are 0–
8% for scrapie in sheep [23], 0–14% for BSE in cattle [31],
and 0% for vCJD in humans (Will et al., unpublished
data). Other suggested routes include skin scarification (as
demonstrated experimentally in mice [32]), food-borne
infection via oral lesions [33], for scrapie possibly even
mechanical transmission involving arthropods [34], and
for vCJD, iatrogenic transmission [3]. However, there is
no evidence that exposure via any of these routes varies
with age in a manner corresponding to the estimated risk
of infection functions (Figure 2)

The measures of PP development (area, weight or
number) used in this study are crude indicators of lym-
phoid tissue development; alternative measures in PP
development may be at least as appropriate (for example,
in sheep, counts of functionally mature FDCs). Moreover,
this analysis assumes that both the anatomical data and
the age-susceptibility estimates available are representa-
tive of each host species in general and not just the specific
populations examined. Similarly, it is assumed that the
associations studied have not been distorted by other fac-
tors (e.g. history of exposure to gut pathogens) which
might influence PP development and/or susceptibility to
TSEs.

Given these caveats, it is nonetheless striking that an asso-
ciation between PP development and susceptibility to
TSEs is seen not just in one host species but in three host
species with different relationships between these varia-
bles and age. This kind of comparative study is especially
useful in cases such as this where experimental manipula-
tions (e.g. of PP development) are not feasible.
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Conclusion
Taken together, the epidemiological, anatomical and
pathological evidence are consistent with the hypothesis
that PP development or a close correlate of PP develop-
ment is a major determinant of the observed age distribu-
tion of natural cases of TSEs in sheep, cattle and humans.
This implies that the age groups most at risk of TSE infec-
tion (given that the individuals are exposed and have a
susceptible PrP genotype) are indicated by the develop-
ment of Peyer's patches in the gut.
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