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Combination of gene expression patterns in
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Abstract

Background: Genetic factors are involved in susceptibility or protection to tuberculosis (TB). Apart from gene
polymorphisms and mutations, changes in levels of gene expression, induced by non-genetic factors, may also
determine whether individuals progress to active TB.

Methods: We analysed the expression level of 45 genes in a total of 47 individuals (23 healthy household contacts
and 24 new smear-positive pulmonary TB patients) in Addis Ababa using a dual colour multiplex ligation-
dependent probe amplification (dcRT-MLPA) technique to assess gene expression profiles that may be used to
distinguish TB cases and their contacts and also latently infected (LTBI) and uninfected household contacts.

Results: The gene expression level of BLR1, Bcl2, IL4d2, IL7R, FCGR1A, MARCO, MMP9, CCL19, and LTF had significant
discriminatory power between sputum smear-positive TB cases and household contacts, with AUCs of 0.84, 0.81,
0.79, 0.79, 0.78, 0.76, 0.75, 0.75 and 0.68 respectively. The combination of Bcl2, BLR1, FCGR1A, IL4d2 and MARCO
identified 91.66% of active TB cases and 95.65% of household contacts without active TB. The expression of CCL19,
TGFB1, and Foxp3 showed significant difference between LTBI and uninfected contacts, with AUCs of 0.85, 0.82, and
0.75, respectively, whereas the combination of BPI, CCL19, FoxP3, FPR1 and TGFB1 identified 90.9% of QFT− and
91.6% of QFT+ household contacts.

Conclusions: Expression of single and especially combinations of host genes can accurately differentiate between
active TB cases and healthy individuals as well as between LTBI and uninfected contacts.

Background
An effective immune response controls Mycobacterium
tuberculosis (MTB) in the majority of infected individ-
uals, and only 3-10% of those infected persons develop
clinical disease and symptoms within the first two years
after infection (primary tuberculosis, TB) while another
5% develop the disease later in life (reactivation TB) [1].
Defining the differences in the immune responses between
those who control versus those who fail to control the in-
fection is an important prerequisite for the development

of interventions that will improve immune-mediated pro-
tection. Various studies have confirmed that genetic fac-
tors are involved in the disease and could be key for the
different outcomes of MTB infection [2,3]. A recent study
showed a significant difference in the type and magnitude
of immune responses between UK and Malawi children
against BCG. Th1 related cytokines were present at higher
levels in the UK infants whereas abundances of innate
proinflammatory cytokines, regulatory cytokines, interleu-
kin 17, Th2 cytokines, chemokines and growth factors
were elevated in the Malawi infants, possibly due to gen-
etic but also environmental factors [4].
Apart from genetic factors lead to differences among in-

dividuals [3,5-10], environment-induced changes in gene
expression occur during the dynamic interaction between
the immune system and M. tuberculosis [11-14]. There-
fore, assessing differential regulation of gene expression
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may help identifying biomarkers to distinguish the dif-
ferent MTB exposure outcomes. Recent studies have
indicated that Fc gamma receptor 1B (FCGR1B) [14], com-
bined with expression patterns of FCGR1A (CD64),
RAB33A and LTF (lactoferrin) [12] and CD3E, CD8A,
IL7R, BLR1, CD19, FCGR1A, CXCL10, CD4, TNF, BCL2,
MMP9, Foxp3, CASP8, CCL4, TNRFSF1A, CASP8, Bcl2
and TNF [15] showed clear discriminatory power between
TB and latent TB infection (LTBI). Expression of RIN3,
LY6G6D, TEX264, and C14orf2 genes identified active,
cured, recurrent or LTBI [11]. Therefore, we analysed 45
genes targeting immune cell subset markers, T regulatory
cell markers, effector T cell markers, apoptosis related
genes and four housekeeping genes using a dual color
multiplex ligation-dependent probe amplification tech-
nique (dcRT-MLPA) to assess gene expression profiles to
distinguish between the different clinical groups. These
markers were selected for gene expression profiling, as de-
scribed in Joosten et al. [15].

Methods
A total of 47 subjects (23 healthy household contacts
and 24 microbiologically confirmed new smear-positive
HIV negative pulmonary TB patients) attending Arada,
T/Haimanot, Kirkos and W-23 health centres in Addis
Ababa were recruited upon informed consent.
The diagnosis of active TB in the health centres was

based on the national guidelines of at least two positive
sputum smears for acid-fast bacilli (AFB) in three speci-
mens collected from each patient as spot-morning-spot
samples. All sputum samples from TB cases were cul-
tured for mycobacteria and confirmed as MTB. We
obtained ethical clearance from AHRI/ALERT Ethics Re-
view Committee (P015/10) and National Research Ethics
Review Committee (NRERC) (3.10/17/10).
QuantiFERON-TB Gold In Tube (QFT-GIT) test was

used to detect LTBI as per the manufacturer’s instruc-
tions (Cellestis Limited, Carnegie, Victoria, Australia)
[16]. Three ml venous blood was directly collected into
three 1-ml QFT-GIT tubes (Cellestis, Australia); one
negative control (Nil) tube containing only heparin, an-
other tube containing phytohaemagglutinin (PHA) as
positive control (Mitogen) and the third tube containing
overlapping peptides representing the entire sequences
of ESAT-6, CFP-10 and TB7.7 (TB Antigen). The tubes
were shaken vigorously and then incubated at 37°C for
about 20 hrs. They were then centrifuged and plasma
was harvested and frozen at −20°C until ELISA was per-
formed. The level of IFN-γ was measured using the QFT
ELISA kit (Cellestis, Australia). The ELISA readout and
data interpretation were carried out using the QFT soft-
ware (Version 2.50, Cellestis, Australia). As recom-
mended by the manufacturer, a positive test for MTB
infection was considered if the IFN-γ difference was

≥0.35 IU/ml (TB antigens–Negative control). The result
of the test was considered indeterminate when an
antigen-stimulated sample was ≤ 0.35 IU/ml (TB anti-
gens–Negative control) if the value of the positive con-
trol was less than 0.5 IU/ml (Positive control–Negative
control).

Blood collection and RNA extraction
Venous blood was collected into PAXgene Blood RNA
tubes and RNA extraction performed following the manu-
facturer’s instructions (PAXgene Blood RNA Kit, PreAn-
alytiX, QIAGEN) [17]. Briefly, blood containing tubes
were centrifuged at 3000 rpm for 10 min, supernatant dis-
carded, pellet lysed and washed, followed by treatment
with proteinase K and ethanol precipitation. To remove
contaminating DNA, RNase-free DNase was added
(QIAGEN, Germany), washed and finally the RNA was
eluted with RNase-free water, concentration-quantified
using a GeneQuant spectrophotometer (Amersham Bio-
sciences, UK) and stored at −80°C until use.

Dual colour multiplex ligation-dependent probe
amplification (dcRT-MLPA)
dcRT-MLPA was done according to ref Joosten et al.
[15]. First, cDNA was synthesised from RNA by using a
RT primer mix and then denatured and incubated over-
night with the mixture of customized probes to allow
the probes to hybridize with the target genes. The two
separate probes were then fused together using a ligase
enzyme. The ligated probes hybridized with the target
genes, were amplified. Finally the PCR product was sep-
arated by electrophoresis and the RNA expression levels
were quantified by measuring the fluorescence intensity.
A set of probes was designed by Leiden University

Medical Centre (LUMC), Leiden, The Netherlands, and
comprised sequences for 45 genes targeting immune cell
subset markers, T reg markers, effector T cell markers
and apoptosis related genes and four housekeeping
genes. Genes associated with active TB disease or pro-
tection against disease, as described in the literature,
were included in the study. The list of genes for which a
set of probes was designed is shown in Table 1.
After completion of the dcRT-MLPA reaction, ampli-

fied products were analysed with an ABI-310 capillary
sequencer in GeneScan mode (Applied Biosystems). The
data from the sequencer were analysed using the Gene-
Mapper software. Further analysis was done using
Microsoft Excel spread sheet software. Finally data were
normalised by selecting one of the housekeeping genes,
which was most stably expressed across the evaluated
samples (ABR, GUSB, GAPDH or B2M). The coefficient
of variation was calculated to determine which reference
gene was most stably expressed across the evaluated
samples. GAPDH was selected and all samples were
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normalized over GAPDH. A peak area of 200 for signals
was assigned as threshold value for noise cut off in Gen-
eMapper. The relative peak size of the product from the
probe recognition sequence was compared with the rela-
tive peak size of the product from a control.

Statistical analysis
The data were analyzed using Graph Pad Prism software,
version 4.0 (La Jolla, CA 92037 USA) and STATISTICA
software, version 10, Statsoft (Ohio, USA). Nonparamet-
ric Mann–Whitney U tests were performed to find the
significance of the observed differences. Best subsets dis-
criminant analysis (GDA) and receiver operator charac-
teristic (ROC) curve analysis were used to evaluate the
predictive abilities of combinations of biomarkers and to
generate cut off values for differentiating between MTB
infection states (described in [18]). A p value less than
0.05 was considered as statistically significant.

Results
We enrolled 24 subjects with culture confirmed HIV−

active tuberculosis TB and 23 HIV− household contacts
comprising 12 QFT-GIT+ and 11 QFT-GIT− household
contacts. The mean age of TB patients was 31.6 ± 1.4
and 46.5% of the participants were females. The mean
age for household contacts was 28.3 ± 2.3 and 47.6% of
household contacts were females.

Table 1 List of target genes for dual colour multiplex
ligation-dependent probe amplification (dcRT-MLPA)

Bcl2 CD8α IL4 RAB33

BLR1 CD14 IL4d2 SEC14L1

BPI CD19 IL7R SPP1

CASP8 CD163 IL10 TGFB1

CCL4 CTLA4 IL22RA1 TGFBR2

CCL13 CXCL10 LAG3 TNF

CCL19 FASLG LTF TNFRSF1A

CCL22 FCGR1A MARCO TNFRSF1B

CCR7 FOXP3 MMP9 TIMP2

CD3ε FPR1 NCAM1 TNFRSF18

CD4 IFN γ RAB13 Reference genes

IL2Rα RAB24 ABR, β2M, GAPDH, GUSB

Figure 1 Gene expressions in household contacts and TB cases. Box plots are shown where the horizontal lines indicate medians of
household contacts (white bars) and TB cases (grey bars) and the lower and upper edge of each boxes indicate the 25th and 75th percentiles,
respectively. Data were analysed using the non-parameteric Mann- Whitney test with p-values indicating significant differences after transformation of
Log2 values. *P < 0.05; **P < 0.001.
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Gene expression of TB patients and household contacts
RNA samples from the 24 TB patients and 23 healthy
household contacts were analysed with dcRT-MLPA and
significant gene expression differences were observed be-
tween these two groups. The gene expression levels of
BLR-1, MARCO, CCL-19, MMP-9, LTF, Bcl-2, and
FCγR1A were statistically higher in TB patients than
contacts (p < 0.05), whereas the expression levels of
IL4δ2 and IL7R were statistically higher in healthy con-
tacts than TB cases (p < 0.05) (Figure 1).
These most accurate single gene markers that differen-

tiated TB cases and contacts were BLR1, Bcl2, IL4d2,
IL7R, FcgR1A, MARCO, MMP9, CCL19, and LTF with
area under the curves (AUCs) of 0.84, 0.81, 0.79, 0.79,
0.78, 0.76, 0.75, 0.75 and 0.68, respectively (Figure 2).
We did a best subsets discriminant analysis, revealing
that a combination of five genes gave a better discrimin-
atory power: the combination of Bcl2, BLR1, MARCO,
FcγR1A and IL4δ2 detected 95.65% (determined using
leave-one-out cross validation) of household contacts and
91.66% of TB cases were correctly classified (Table 2).

FcγR1A and IL4δ2 were the most frequently occurring
markers in the GDA biomarker combinations differentiat-
ing between the TB cases and household contacts
(Figure 3).

Gene expression of LTBI household contacts
We further classified the household contacts into LTBI
and uninfected groups using the QFT test to assess the
effect of LTBI on the expression level of different genes.
The expression levels of Foxp3, CCL19 and TGFβ were
significantly higher (p < 0.05) in QFT+ than QFT− con-
tacts (Figure 4).
The most accurate single gene markers that differenti-

ated QFT+ and QFT− contacts were CCL19, TGFβ1, and
Foxp3 with AUCs of 0.85, 0.82, and 0.75 respectively
(Figure 5). A best subsets discriminant analysis (GDA)
of the data indicated that optimal discrimination of LTBI
and uninfected household contacts could be achieved
with combinations of five variables, BPI, CCL19, Foxp3,
FPR1 and TGFβ1. A combination of these genes de-
tected 90.9% QFT− household contacts using leave-one-
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Figure 2 Receiver operator characteristics curves showing the accuracies of individual genes in discriminating between active TB cases
and household contacts. Receiver operator characteristic (ROC) curves for the accuracies of single analytes to ifferentiate between active TB and
household contacts. AUC = Area under the curve.
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out cross validation, and detected 91.6% of QFT+

(Table 3). FoxP3 and CCL19 were the most frequently
occurring markers in the GDA biomarker combinations
differentiating between LTBI and uninfected household
contacts (Figure 6).

Discussion
Quantitative changes in gene expression could potentially
be used as biomarkers to classify the different clinical out-
comes of MTB exposure, with potential future applica-
tions in the evaluation of new drugs and vaccines. A
recent study by Kaforou M. et al. [19] reported that blood
transcriptional signatures distinguished TB from other
conditions prevalent in HIV-infected and -uninfected
African adults. We tested expression of 45 genes aimed at
characterizing unique gene expression profiles in view of
the complexity of the infection process and outcomes of

MTB exposure and infection. This approach emphasizes
the discriminatory abilities of single biomarkers, but more
importantly combinations of biomarkers. In this study we
used a dcRT-MLPA technique to simultaneously identify
multiple genes that are differentially expressed in TB cases
and their contacts and identify nine genes that were differ-
entially expressed between TB cases and their contacts.
The dcRT-MLPA technology fulfils a biomarker discovery
niche between unbiased approaches such as whole tran-
scriptome analysis and targeted analysis by qRT-PCR and
enables cost-effective biomarker discovery in large field-
studies with widely available laboratory equipment.
The expression levels of FcγR1A, LTF, BLR1, MARCO,

CCL-19, MMP-9, CCL4, and Bcl2 in whole blood was
significantly higher elevated in TB patients than among
contacts, whereas the expression of IL4δ2 and IL-7R
were significantly higher in healthy contacts as com-
pared to TB cases. The higher expression of FcγR1A and
LTF in TB patients has been reported previously in
Germany [12] with microarray analysis of PBMCs from
TB patients and healthy donors and in Gambia and
Paraguay with MLPA [15] and a recent study showed
expression of significantly higher level expression of
FcγR1A in participants with active TB than in those with
LTBI before treatment regardless of HIV status or gen-
etic background [20]. FcγR1A and LTF are essential
components of antimicrobial defenses and blocking of
induction of FcγR1A is one major target for the survival
strategy of MTB [21]. LTF, in addition to regulating iron
uptake and utilization, modulates both the innate and
adaptive immune response and the potential of LTF as
an adjuvant for BCG vaccination has been considered
[22]. Another study in a murine model also showed that
susceptibility to TB could be reduced by avoiding over-
load of iron using LTF [23].

Table 2 General discriminate analysis of five marker combinations to discriminate active TB and household contacts

Household contacts TB cases

Resubstitution
classification

Leave-one-out
cross

Resubstitution
classification

Leave-one-out
cross

Wilks lambda

Genes Matrix Validation Matrix Validation Value f p value

Bcl2, BLR1, FcγR1A, R1A, IFNγ, IL4δ2 95.65 91.3 95.83 95.83 0.74 14 <0.001

Bcl2, FcγR1A, IFNγ, IL4δ2, MARCO 91.3 91.3 95.83 91.66 0.72 15.8 <0.001

Bcl2, BLR1,CD163, FcγR1A, IL4δ2 95.65 95.65 91.66 87.5 0.75 13.65 <0.001

Bcl2, BLR1, FcγR1A, IL4δ2, MARCO 95.65 95.65 95.83 91.66 0.73 14.95 <0.001

Bcl2, CD19, FcγR1A, IL4δ2, MARCO 95.65 95.65 91.66 91.66 0.75 13.21 <0.001

Bcl2, BLR1, CD19, FcγR1A, IL4δ2 91.3 91.3 95.83 87.5 0.77 11.98 0.0013

Bcl2, BPI, FcγR1A, IL4δ2, MARCO 95.65 95.65 91.66 95.83 0.72 16.11 <0.001

BLR 1, FcγR1A, IFNγ, IL4δ2, MMp9 95.65 86.95 95.83 91.66 0.75 13.46 <0.001

BLR 1, FcγR1A, IFNγ, IL4d2, RAB13 91.3 86.95 95.83 91.66 0.76 13.13 <0.001

BLR2, FcγR1A, IL4δ2, MARCO, SPP1 95.65 95.65 95.83 87.5 0.71 16.7 <0.001

Percentage indicates the proportion of groups discriminated using the combination of markers; and f is the measure of fit.

Figure 3 Frequency of individual genes in top 10 models for
discriminating between active TB cases and household
contacts. The columns represent the number of inclusions of
individual markers into the most accurate five-analyte models by
general discriminant for discriminating between active pulmonary
TB cases and contacts.
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BLR1 (CXCR5) encodes a chemokine receptor and the
higher expression of this gene in TB patients might help
in sustaining the expression of its ligand CXCL13, which
in turn attracts B cells. A role of B cells in immunity
against TB has been observed in some studies [24,25].
The higher level of CCL19 in TB patients could be due to
active infection where a number of crucial cells including
macrophages and T cells are recruited to contain infec-
tion. Different in vivo and in vitro studies indicate that
MTB infection of human monocyte derived macrophages,
alveolar macrophages, and CD4+ T cells induce upregula-
tion of chemokine receptors and their ligands [26-28].
The higher level of MMP9 and MARCO in TB infec-

tions is in line with other previous reports, revealing
higher level of MMP-9 in TB cases where it facilitates
early dissemination of MTB with subsequent recruit-
ment of macrophages, induction of Th1 type immunity

and granuloma formation [29,30]. MARCO is a phago-
cytic receptor and MTB uses different receptors for
entry into macrophages. Previous work in mouse models
also showed upregulation of MARCO genes after BCG
infection [31] and a low proinflammatory response of
MARCO−/− mice in response to infection with virulent
MTB [32].
The remaining other genes that had discriminatory

power were Bcl-2 and IL-4δ2. Bcl-2 is an anti-apoptotic
gene and in this study, its expression was higher in TB
patients. Apoptosis and autophagy likely participate in
elimination of infected cells without releasing viable bac-
teria. Previous studies in Ethiopia and Gambia [15,33]
indicate up regulation of apoptotic genes in TB patients
but we did not observe these findings in our study.
However, the higher expression of Bcl2 which we ob-
serve shown here instead could be part of a pathogen

Figure 4 Gene expression in Quantiferon+ and Quantiferon− household contacts. Box plots are shown with the horizontal lines indicating
median levels of Quantiferon+ (white bars) and Quantiferon− (grey bars) household contacts. The lower and upper edge of each box indicates
the 25th and 75th percentiles, respectively. Data were analysed using nonparametric Mann–Whitney test with p-values indicating significant
differences after transformation of data to Log2 values. *P < 0.05.
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Figure 5 Receiver operator characteristics curves showing the accuracies of individual genes in discriminating between LTBI and
uninfected household contacts. Receiver operator characteristic (ROC) curves for the accuracies of single analytes to differentiate between LTBI
and uninfected household contacts. AUC = Area under the curve.
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survival strategy. Previous studies also showed that MTB
or its products can inhibit apoptosis [34]. We found the
expression of IL4δ2 to be higher in contacts than in TB
patients. IL4δ2 is a recently described splice variant of
IL4 which inhibits IL4 activity. LTBI individuals expressed
high levels of Th1 cytokines and the IL4 antagonist IL4δ2,
and individuals with a high IL4δ2/IL4 ratio were reported
being capable of controlling MTB infection [35].
The expression of CCL19, TGFβ1, and Foxp3 discrimi-

nates LTBI and uninfected contacts with higher expres-
sion of all genes in IGRA positive latently MTB infected
individuals. Their higher expression might be due to re-
cent MTB infection, resulting in immune activation and
recruitment of immune cells. CCL19 is critical for recruit-
ment of activated immune cells. Increased expression of
regulatory molecules could help regulating exacerbated

immune activation and preventing excessive inflammation
and resulting causing immunopathology. Regulatory mol-
ecules like Foxp3 and TGFβ1 indeed have been reported
to regulate immune responses during infection thereby
preventing excessive inflammation and tissue damage
[36]. Another study also showed activation and expansion
of both T effector cells and Foxp3 (+) T reg populations
early in MTB infection. IL2 induces expression of both ef-
fector and regulatory T cells and confers resistance against
severe MTB infection [37].

Conclusion
In conclusion, active TB cases versus healthy TB con-
tacts, as well as LTBI versus uninfected healthy TB pa-
tient contacts could be accurately differentiated using
expression of single genes and particularly multi-

Table 3 General discriminate analysis of five marker combinations to discriminate LTBI (QFT+) and uninfected (QFT −)
household contacts

QFT negative QFT positive

Resubstitution
classification

Leave-one-out
cross

Resubstitution
classification

Leave-one-out
cross

Wilks lambda

Genes Matrix Validation Matrix Validation Value f p value

BPI, CASP8, CCL19 and TGFβ1 90.9 81.8 91.6 91.6 0.84 17.45 0.093

BPI, CCL19, FOXP3, TGFβ1 and TIMP2 90.9 81.8 83.3 83.3 0.74 17.67 0.027

CASP8, CCL13, FOXP3 and TGFβ1 81.8 81.8 91.6 91.6 0.86 2.74 0.116

CCL19, CD14, FOXP3, IL2RA and TIMP2 90.9 90.9 83.3 83.3 0.62 10.22 0.005

CASP8, CCL19, FOXP3, RAB24 and TIMP2 81.8 81.8 91.6 91.6 0.92 1.54 0.23

CASP8, CCL19, CD163, FOXP3 and TGFβ1 90.9 81.8 91.6 91.6 0.92 1.53 0.23

CCL19, CD4, FOXP3, IL2RA and TIMP2 90.9 90.9 83.3 83.3 0.63 9.76 0.006

BPI, CCL19, FOXP3, FPR1 and TGFβ1 90.9 90.9 91.6 91.6 0.6 11.08 0.004

CASP8, CCl19, FASL, FOXP3 and TGFβ1 90.9 90.9 83.3 83.3 0.96 0.55 0.46

BPI, CCL19, FOXP3, SEC14L1 and TGFβ1 81.8 81.8 91.6 83.3 0.74 5.85 0.03

Percentage indicates the proportion of groups discriminated using the combination of markers; and f is the measure of fit.

Figure 6 Frequency of individual genes in top 10 models for discriminating between LTBI and uninfected household contacts. The
columns represent the number of inclusions individual markers into the most accurate five-analyte models by general discriminant for discriminating
between QFT+ and QFT− contacts.
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component - combinations of genes with improved dis-
criminatory power. Hence, our findings deserve further
validation in larger studies and prospective cohorts.
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