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Abstract

Background: Non-pharmaceutical interventions (NPI) are the first line of defense against pandemic influenza.
These interventions dampen virus spread by reducing contact between infected and susceptible persons. Because
they curtail essential societal activities, they must be applied judiciously. Optimal control theory is an approach for
modeling and balancing competing objectives such as epidemic spread and NPI cost.

Methods: We apply optimal control on an epidemiologic compartmental model to develop triggers for NPI
implementation. The objective is to minimize expected person-days lost from influenza related deaths and NPI
implementations for the model. We perform a multivariate sensitivity analysis based on Latin Hypercube Sampling
to study the effects of input parameters on the optimal control policy. Additional studies investigated the effects of
departures from the modeling assumptions, including exponential terminal time and linear NPI implementation
cost.

Results: An optimal policy is derived for the control model using a linear NPI implementation cost. Linear cost
leads to a “bang-bang” policy in which NPIs are applied at maximum strength when certain state criteria are met.
Multivariate sensitivity analyses are presented which indicate that NPI cost, death rate, and recovery rate are
influential in determining the policy structure. Further death rate, basic reproductive number and recovery rate are
the most influential in determining the expected cumulative death. When applying the NPI policy, the cumulative
deaths under exponential and gamma terminal times are close, which implies that the outcome of applying the
“bang-bang” policy is insensitive to the exponential assumption. Quadratic cost leads to a multi-level policy in
which NPIs are applied at varying strength levels, again based on certain state criteria. Results indicate that linear
cost leads to more costly implementation resulting in fewer deaths.

Conclusions: The application of optimal control theory can provide valuable insight to developing effective
control strategies for pandemic. Our findings highlight the importance of establishing a sensitive and timely
surveillance system for pandemic preparedness.

Background
Emerging influenza is threatening the world with the
next pandemic [1]. The current swine flu caused by a
novel H1N1 virus has infected a documented 182,166
humans, killing 1,799 from April 2009 to August 2009
[2]. The World Health Organization (WHO) declared
the outbreak to be a pandemic because of growing
worldwide cases [3]. Currently, the severity of the out-
break is moderate as most people recover from infection
without the need for medical care [4]. However, if the
virus mutates and achieves the ability to cause severe

illness, it will kill more people and overwhelm the health
system. Vaccination is the most effective means of pan-
demic mitigation. Vaccine production is a complex
multi-step process which involves development, manu-
facturing, and delivery processes and current levels of
vaccine production capacity are inadequate. Thus many
uncertainties exist in every step and effective vaccines
are typically available well after the viral strain has
emerged [5-8]. For instance, vaccines against the H1N1
strain are still under development and will remain in
short supply by November 2009 [9]. Current stockpiling
of antiviral drugs will also be in short supply and their
efficiency will be limited once a pandemic occurs [7,8].
Public health systems need to be prepared for cases
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when effective pharmaceutical interventions are unavail-
able. Non-pharmaceutical interventions (NPIs) are
necessary to delay and dampen the pandemic before
pharmaceuticals become available [7]. Recommended
NPIs include: (1) social distancing: school closure, work-
place distancing, restricted public gathering and travel;
(2) case containment measures: voluntary case isolation,
voluntary quarantine of members of households with ill
persons; and (3) infection control measures: hand
hygiene, cough etiquette, and mask/respirator usage
[1,7].
NPIs were implemented during the 1918 pandemic

and more recently during the severe acute respiratory
syndrome (SARS) outbreak of 2003. Although research
on these events confirms the importance of NPIs, sub-
optimal triggering during the 1918 pandemic rendered
NPIs only moderately effective at reducing mortality
[10-12]. During SARS, sheltering and quarantine were
found to be effective [13,14], while border screening was
not [6]. During the current H1N1 outbreak, infection
control is recommended to prevent spread of the virus
among humans. Public health authorities are developing
action plans which may request social distancing actions
depending on the severity of the outbreak [15].
Mathematical models are often used to study disease

spread, with the Susceptible-Infectious-Recovered (SIR)
model being preferred for diseases spread via droplet
and aerosol. The SIR model has been used to study pan-
demic flu [11,12,16-25], seasonal flu [26-28], SARS
[13,29-31], and smallpox [32-35]. These papers use SIR
to simulate the disease outbreak and evaluate the effec-
tiveness of selected control measures under various pre-
defined scenarios. They do not provide optimal controls
for initiating implementation, and thus we will not
review them here. SIR literature most directly relevant
to this work includes [36-41]. These authors use the SIR
model to study optimal controls, i.e., controls that mini-
mize a prescribed objective function. Most show “bang-
bang” controllers to be optimal (in the sense of mini-
mizing a specified objective function). These policies
apply no control until the occurrence of a triggering
event and then apply controls at maximum strength.
Sethi derived optimal closed-form results for isolation

and immunization policies [37,38] using an SI model.
With this model, the population is partitioned into two
parts, susceptible and infectious. The control is to either
isolate and vaccinate at a maximum rate or do nothing.
Infectious individuals who recover become susceptible
once again, and thus immunity due to infection and
subsequent recovery are not considered. Clancy [36] stu-
died the properties of optimal policies for isolation and
immunization assuming that all infectious individuals
can be immediately isolated and all susceptible indivi-
duals can be immediately immunized. The policy takes

no action when the number of infectious is below an
optimal threshold and immediately isolates and/or
immunizes when the number exceeds the threshold.
However, they can only obtain optimal policies when
the state space is small. Morton and Wickwire [40]
developed optimal control policies for immunization
assuming an infinite pandemic terminal time. However
their switching curve derivation has an error in the deri-
vatives (Eqs. 7a and 7b of [40]) and thus their results
are unclear. Behncke [41] derived mathematical proper-
ties of optimal vaccination programs under the following
assumptions: 1) the time when vaccine becomes avail-
able is known; 2) infectious individuals can be immedi-
ately and completely isolated; and 3) the time horizon of
the pandemic is infinite.
Overall, we think the underlying assumptions of cur-

rently published results are questionable. It is not the
case that all infectious can be immediately identified
and isolated. Further, planners do not know when vac-
cines will become available, and even when available, it
is not true that mass prophylaxis is instantaneous.
Finally, during a pandemic, people will die. The current
models do not account for mortality, which could be
significant for viral strains such as H5N1.
In this work, we use an expanded SIR model to

develop triggers for NPI implementation to minimize
expected person-days lost resulting from influenza
related deaths and NPI implementation. NPI policies are
derived for a deterministic control model. Results are
compared with the most relevant optimal control papers
discussed above. Multivariate sensitivity analyses based
on Latin Hypercube Sampling are performed to investi-
gate the effects of input parameters on the control pol-
icy structure and the mean cumulative deaths.
Additional studies investigate the effects of departures
from the modeling assumptions, which include expo-
nential terminal time and linear NPI implementation
cost.

Methods
Optimal control model
In this section, we formulate an optimal control pro-
blem with an expanded epidemic model to compute
NPI implementation strategy. To understand the follow-
ing discussion, the reader is referred to Figure 1, which
illustrates the compartmental model, and to Table 1,
which provides a summary of notation. To construct the
model, we make six assumptions:

1. At any time, t ≥ 0, the community is composed
of S(t) susceptible, I(t) infectious, R(t) recovered,
and D(t) deceased individuals. The population is
closed, ignoring the demographic turnover or
immigration, i.e. S(t) + I(t) + R(t) + D(t) = N. To
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make the analysis independent of population size,
we normalize the model by letting s t S t

N( ) ( ) ,
r t R t

N( ) ( ) , r t R t
N( ) ( ) , and d t D t

N( ) ( ) . Thus, any
community can be described by state variable x(t)
= (s(t), i(t), r(t), d(t)).
2. The population is homogeneously mixed and peo-
ple make contact at random.
3. People susceptible are able to get infected when
they contact infectious people. Once infected, they
move into the infectious compartment. People
infected can either recover at a constant rate, g, or
die at a constant rate, τ. People recovered are
assumed to be immune within our study horizon.
4. NPI implementation is modeled by the decision
variable u(t), where 0 ≤ u(t) ≤ b <b. NPI implementa-
tion reduces the rate of contact between susceptible

and infectious individuals, and thus dampens the
infection rate from b to a lower level, b - u(t). In this
paper, we only consider NPIs that will disrupt the
normal societal functions and result in significant
economic impact, such as school closure, work space
distancing and voluntary isolation and quarantine.
We assume these NPIs have the same effect in redu-
cing disease spread.
5. We let person-days lost due to death be unit cost,
while c ≤ 1 will be person-days lost due to NPI imple-
mentation. The cost c is a weight of NPI cost relative
to death. It measures the loss of productivity (person-
days) due to implementing NPIs. To determine the
value of c, the public health officials need to consider
many factors, such as culture of the community, per-
ceptions to death, consequences of pandemic and of

Figure 1 Scheme of Susceptible-Infectious-Recovered/Death (SIRD) Model. Boxes represent compartments and arcs represent flux between
compartments. Figure 1 expands the classic Susceptible-Infectious-Recovered (SIR) model to capture the mortality.

Table 1 Model notation. Provides a summary of notation.

List of notation

s(t) proportion of population that is susceptible in the community at time t, s(t) Î [0, 1]

i(t) proportion of population that is infectious in the community at time t, i(t) Î [0, 1]

r(t) proportion of population that has recovered in the community at time t, r(t) Î [0, 1]

d(t) v of population that has died in the community at time t, d(t) Î [0, 1]

x(t) = (s (t), i(t), r(t), d(t)) state that describes the disease status of a community

x(0) = (s (0), i(0), r(0), d(0)) initial disease state of a community

u(t) decision variable to model NPI implementation, u(t) Î [0, b]

b maximum reduction in infection rate b by NPI implementation, b Î [0, b]
T time when vaccine becomes available, assumed to be exponential with mean F
b infection rate

g recovery rate

τ death rate

c relative cost of NPI compared to a single death, c Î [0, 1]

R0 basic reproductive number, the average number of secondary cases an infectious individual case will cause

V (x; u) value function defined as expected person-days lost
u arg V x u

u b
* min ( ; )

[ , ]


 0
control that minimizes the value function

ψ (s, i) switching curve

Ω ={(s, i); s, i ≥ 0, s + i ≤ 1} state space

Ω1 = {(s, i) Î Ω, u* > 0} state space where u* > 0

Ω2 = {(s, i) Î Ω, u* = 0 } state space where u* = 0

  
| |

| |


 
1

1 2
proportion of the control space

HJB Hamilton-Jacobi-Bellman equation

Lin et al. BMC Infectious Diseases 2010, 10:32
http://www.biomedcentral.com/1471-2334/10/32

Page 3 of 13



the NPIs, economic constraints, and etc. We assume
that cost of NPI implementation increases with
implementation strength. In particular, we consider
two cost structures, a linear structure in which cost is
proportional to NPI strength, and a quadratic struc-
ture in which the change in cost with NPI strength is
more variable. This paper is focused most extensively
on the linear structure.
6. The optimization horizon T is assumed to be the
time when effective vaccine becomes available to the
community. Although the production of the first
doses of vaccine is estimated to take 4-6 months
once the virus strain can be identified, nobody
knows exactly when circulating virus can be identi-
fied. Along with vaccine development, there are
issues regarding manufacturing, delivery, and deploy-
ment. To capture the uncertainty in vaccine arrival
time, we let T follow an exponential distribution.
We can derive a model with a more general vaccine
arrival time, but the problem is not currently
numerically tractable, that is, algorithms for the gen-
eral terminal time case present significant challenges
and yet to be developed and tested. The exponential
assumption ensures we get the discounted value
function, which allows for a solution and some
insights about the policy. In later sections we tested
the model sensitivity to the exponential assumption.
The probability density function (pdf) of T is written
as f(T, F) = Fe-FT, where T ≥ 0.

Because NPI implementation disrupts daily activities
vital to a productive society, they should only be used
when they will be effective. Thus, in developing triggers,
NPI cost must be balanced with NPI effectiveness. In
this work, we use person-days lost to measure NPI cost
and effectiveness. NPIs cause person-day losses by shut-
ting down vital activities, but mitigate person-day losses
by reducing mortality. By capturing the dynamic rela-
tionship between NPI implementation, mortality, and
associated person-day losses, our model provides a
mechanism for finding an NPI triggering scheme that
helps minimize total person-days lost during the time
period before vaccines become available.
The dynamics of the controlled epidemic are given by

the non-linear differential equations (dots denote time
derivatives, i.e. s t ds t

dt( ) ( ) :






s t u t s t i t

i t u t s t i t i t

r

( ) ( ( )) ( ) ( )

( ) ( ( )) ( ) ( ) ( ) ( )

(

  

   



  
tt i t

d t i t

) ( )

( ) ( )









(1)

where s(t) + i(t) + r(t) + d(t) = 1, s(t), i(t), r(t), d(t) ≥
0, and the control, u(t), takes values in [0, b]. The total
person-days lost for a pandemic under a policy which
prescribes an admissible control, u, will be denoted by
the value function V (x, u), which is defined as:

V x u E d t cu t s t dt
T

T
( , ) ( ) ( ) ( )   

0
(2)

The objective is to minimize expected person-days lost
over the time horizon, T, which is assumed to be the
time when effective vaccine becomes available to the
community. An admissible control, u*, which minimizes
V (x, u) will be called optimal, and the corresponding
value function is denoted by:

V x V x u

E d t cu t s t dt

u b

u b T

T

*( ) min ( , )

min ( ) ( ) ( )

[ , ]

[ , ]



  




 
0

0 0



mmin ( ) ( ) ( )
[ , ]u b T

T
E i t cu t s t dt


 0 0



(3)

Model analysis
From Eqs. (1) and (3) we can see that the knowledge of
the state variables s(t) and i(t) determines the other
two, thus we focus our analysis on the susceptible and
infectious compartments. This reduces the system to
two dimensions, S and I. Thus, we study the control
system in the (s, i)-plane, defined as Ω = {(s, i), s, i ≥ 0,
s + i ≤ 1}. We let (s, i) represent the initial state x(0) =
(s(0), i(0)), and V (x, u) = V ((s, i); u) be the associated
value function, which captures total person-days lost
starting in state (s, i) Î Ω and operating under control
u. The expected value of V*(s, i) is calculated by inte-
grating V ((s, i), u)·f(T; F) over the range of T:

V s i E i t cu t s t dt

i t

u b T

T

u b

*( , ) min ( ) ( ) ( )

min [ (

[ , ]

[ , ]

  







0 0

0



 )) ( ) ( )]  


 cu t s t dt e dTT
T

 

00

By changing the order of integration, the problem is
converted to an infinite horizon discounted problem:

V s i i t cu t s t e dTdt
u b t

T

u

*( , ) min [ ( ) ( ) ( )]

min

[ , ]

[

  












0 0
  

00 0, ]
[ ( ) ( ) ( )]

b

ti t cu t s t e dt  


 
(4)
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Based on Pontryagin’s Maximum Principle [42], which
gives necessary conditions for optimal control, we can
derive a first-order partial differential equation satisfied
by the optimal value function, V*. This is called the
Hamilton-Jacobi-Bellman (HJB) equation:

0
0

     


   


 


   V s i i cus
V
s

u si
V
iu b

*( , ) min{( )
*

[ ( ) ]
*

[ (
[ , ]

uu si i) ( ) ]}   (5)

where 

V
s
* and 


V
i
* denote the gradient of V* at the

point (s, i).
Eq. (5) is a linear function of u, thus the optimal con-

trol will be “bang-bang” control [43], i.e., the candidate
control, u*, should satisfy:

u if s i

u b if s i

* ( , )

* ( , )

 
 





0 0

0

 

 




(6)

where the switching curve ψ (s, i) is the coefficient of
u in Eq. (5), defined as:

 ( , ) (
* *

)s i cs si
V
s

V
i

  


 


(7)

The optimal control u* is pushed to its lower/upper
bound depending on the sign of its coefficient, the
switching curve ψ (s, i), because the HJB equation, Eq.
(5), is linear in the control, u. However, if the HJB is
nonlinear in u, the optimal control will not be bang-
bang. An example will be the linear quadratic optimal
control problem, where the optimal policy is a linear
state feedback [42].
By the bang-bang nature of candidate u*, the NPIs

should be implemented at the maximum level when ψ
(x) <0. To understand this, assume the community is in
state xA = (s, i) and consider exerting an instantaneous
and small control, δu, which will move the system to
state xB = (s + δusi, i-δusi) instantaneously. The exertion
will cost csδu person-days lost. If V*(xA)-V* (xB) exceeds
csδu, then it is cost-effective to implement the NPIs.
Here, V* (xA)-V* (xB) is the rate of change of the value
function V* in the (-δusi, δusi) direction, i.e.,

V x V x siA B u
V
s

V
i*( ) *( ) ( )* *   



 ). Hence,

 ( , ) ( )* *s i cs si V
s

V
i   



 0 indicates that exerting

control reduces person-days lost. We keep implement-
ing NPIs until ψ (x) > 0.
Due to the complexity of the Eq. (5), the switching

curve, ψ (x), has no closed form. To find ψ (x), we use
an algorithm based on Dynamic Programming [44],
which requires discretization over time and space. The
uniqueness and convergence of the solution is guaran-
teed by the viscosity solution concept developed in [44].

Results
NPI policies assuming linear NPI implementation cost
The optimal control, u*, is obtained by solving the HJB
equation (Eq. (5)). Figure 2 shows u* for two infection
rates, 0.4 and 0.6, given a recovery rate of 0.25 and a
death rate of 0.05 (taken from [45]). Person-days lost
from NPI implementation, c, is set to 0.05 (5% of the
cost of a single death). The maximum impact of NPIs
on the infection rate is assumed to be a 20% reduction.
Note that the basic reproductive number R0 without any
control is given by R0 = b = (g + τ).
Figures 2(a) and 2(b) indicate when to trigger NPI

implementation. When the system state falls in region
Ω1, NPIs should be implemented at maximum strength;
in contrast, NPIs should not be implemented when the
state falls in Ω2. For example, in the influenza scenario
of Figure 2(a), NPIs should be implemented when 60%
remains susceptible and 20% of the population is
infected. However, if 50% remains susceptible and 10%
is infected, it is better not to trigger the NPIs.
We compare our policy against the most relevant

optimal isolation policies derived in [37]. Figures 2(c)
and 2(d) show these isolation policies under the differ-
ent infection rates. The control either isolates at a
maximum rate when the number of infectious exceeds
a threshold or does nothing. For a pandemic with
b = 0.6 and R0 = 2.0, Figure 2(d) tells us not to act
until the percent infectious exceeds 50%; while Figure
2(b) tells us to implement NPIs at an earlier stage of
the outbreak, for example 99% susceptible and 1%
infectious.
Figure 3 provides examples of the impact of NPIs

triggered at different initial states. The figure presents
graphics for three initial states. The initial state of Fig-
ures 3(a) and 3(b) is a triggering state for the NPI con-
trols in Figures 2(a) and 2(b), while the initial states of
Figures 3(c) and 3(d) are triggering states for the con-
trols in Figures 2(c) and 2(d).
We illustrate cases for which R0 > 1, i.e., the uncon-

trolled infection spreads rather than dying out. Figures 3
(a) and 3(b) compare the epidemic curves with and
without NPIs, starting from a state 99% susceptible and
1% infected. According to Figures 2(a) and 2(b), the
NPIs should be triggered at this state. In Figure 3(a),
NPI implementation not only reduces the total death by
62%, but also eliminates the peak of the outbreak. Over-
all, NPI implementation saves 50% of the average per-
son-days lost. In Figure 3(b), where a more severe
pandemic is considered, the reduction in total deaths is
19% and NPI implementation reduces and delays the
peak of outbreak, which allows additional time for vac-
cine development.
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Figures 3(c) and 3(d) compare the epidemic curves with
and without NPIs starting from states that fall on the
control thresholds of [37] shown in Figures 2(a) and 2(d).
The proportions of recovered and dead population were
set to 0 because they could not be differentiated from
infectious people in an SI model. It is still best to imple-
ment NPIs at these states but the impact is limited.

NPI policies assuming quadratic NPI implementation cost
We also computed control policies for systems assuming
quadratic control cost instead of linear cost, i.e.,
the value function is written as

V x u E d t cu t s t dt
T

T
( , ) ( ) ( ) ( )    2

0
, while the system

dynamics still follow Eq. (1). Based on Pontryagin’s
Maximum Principle [42], we can derive the Hamilton-
Jacobi-Bellman (HJB) equation for the new problem:

0
0

2     


   





   V s i i cu s
V
s

u si
V
su b

*( , ) min{( )
*

[ ( ) ]
*

[ (
[ , ]

  u si i) ( ) ]}  (8)

Eq. (8) is now a quadratic function of u, thus the opti-
mal control will not be “bang-bang” control. The candi-
date control u* should satisfy:

u if i
V
s

V
i

c

u i
V
s

V
i

c if

*
* *

/

*
* *

/

  


 










  


 








0 2 0

2  00 2  


 


























i
V
s

V
i

c b

u b otherwise

* *
/

*

(9)

By solving Eq. (8), we obtained the NPI policies for
systems assuming quadratic control cost shown in
Figure 4. Figures 4(a) and 2(a) show analogous plots of
the control policy under quadratic and linear costs for

Figure 2 Optimal NPI policy and optimal isolation policy derived in [37](g = 0.25, τ = 0.05, c = 0.05 and b = 0.2b). Figure 2 shows the
optimal control policies for two infection rates, 0.4 and 0.6, given a recovery rate g = 0.25 and a death rate τ = 0.05. 2(a) presents the optimal
NPI control for b = 0.4 and R0 = 1.33. 2(b) presents the optimal NPI control for b = 0.6 and R0 = 2.00. 2(c) presents the optimal isolation policy
derived in [37] for b = 0.4 and R0 = 1.33. (d) presents the optimal isolation policy derived in [37] for b = 0.6 and R0 = 2.00.
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influenza characterized by b = 0.4 and R0 = 1.33. Figure
4(a) shows a multi-level policy in which NPIs are
applied at varying strength levels based on certain state
criteria. Note that “red” indicates > 80% NPI strength,
“yellow” indicates 60 80% NPI strength, and so forth.
The level of NPI policy decreases from 100% of maxi-
mum NPI level to 0% as system state traverses from the
upper to the lower part and from the right corner to the
interior region. The contour line at u* ≈ 50% of maxi-
mum impelmentation level is very similar in shape and
location to the boundary between Ω1 and Ω2 in Figure
2(a). As another demonstration, Figures 4(b) and 2(b)
show the control policies under both control costs with
influenza characterized by b = 0.6. The two boundaries
between Ω1 and Ω2 in Figure 2(b) resemble the contour
lines u* ≈ 50% of maximum impelmentation level in
Figure 4(b). The two regions of high level of u* in the
upper corner and lower right corner of Figure 4(b) cor-
respond to two control regions Ω1 in Figure 2(b). In
addition, Table 2 compares the means of the expected
person-days lost per person due to death, D , and con-
trol intensity, u * , between the linear and quadratic
models. The overall NPI strength of the linear model is
higher than that of the quadratic model, while the

expected person-days lost due to death is lower. The
linear model tends to implement NPIs more intensely
and save more lives while having a higher overall cost.

Sensitivity analysis
A multivariate uncertainty and sensitivity analysis was
performed to study the effects of input parameters on
the control policy for the linear cost model. This analy-
sis investigated the effects of five inputs (R0, g, τ, c, b)
on a performance measure, ω, defined as the proportion
of the control space to the total state space, i.e.,

  
| |

| |


 
1

1 2
. There is no well-defined performance

measure to evaluate the NPI policy, especially when the
policy is defined in a 2-dimensional state space. We

Figure 3 Epidemic curves of infectious and dead population with and without NPI implementation. Figure 3 shows the impact of
optimal control on pandemic severity, peak, and total deaths, when NPIs are triggered at different initial states. (a) compares the epidemic
curves with and without NPIs, starting from a state 99% susceptible and 1% infected when b = 0.4. (b) compares the epidemic curves with and
without NPIs, starting from a state 99% susceptible and 1% infected when b = 0.6. (c) compares the epidemic curves with and without NPIs,
starting from a state 67% susceptible and 33% infected when b = 0.4. (d) compares the epidemic curves with and without NPIs, starting from a
state 50% susceptible and 50% infected when b = 0.6.

Table 2 Comparison of the means of the expected
person-days lost per person due to death and control
intensity between the linear and quadratic models

D u * (% of b)

b Linear Quadratic Linear Quadratic

0.4 3.676 5.447 38.9 36.7

0.6 4.210 5.448 37.2 33.9
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chose ω because it captures the overall intensiveness of
NPI implementations. In addition, we investigated the
effect of these parameters on the outcome of applying
the control policy, defined as the mean cumulative
death, dT . We simulated the SIRD system under the
optimal policy starting from all state (s0, i0, r0, d0),
where s0 > 80%, i0 <20%, and d0 = 0. The simulation
was terminated at a randomly selected exponential
terminal time, and we recorded and analyzed the cumu-
lative number of deaths. The mean cumulative death
was calculated by taking the average of cumulative
deaths over all tested initial states.
Table 3 summarizes the estimated probability distribu-

tion functions (PDFs) of five input parameters, assuming
the input parameters are statistically independent. The
PDFs of influenza transmission characteristics (R0, 1/g,
and 1/τ) are estimated based on the 1918 pandemic
[25]. Note that the infection rate b can be written as R0

(g + τ). The effect of NPIs, b, was found to reduce the
infection rate, b, by up to 30-50% in 1918 and in many
cases the effect of NPIs was very limited [11]; thus we
assume the impact of NPI implementation, b, follows

Uniform(0,50%). We are not able to find any empirical
data on the cost of NPI, c. This value is a relative cost,
which depends on decision makers’ perceptions of sav-
ing lives versus maintenance of daily societal functions.
In our analysis we let c take the value from 0 to 0.25
uniformly, which would imply that the cost of four ses-
sions of maximal NPI implementation is equivalent to
the cost of one death.
We sampled ranges of the parameters 1000 times

using Latin Hypercube Sampling (LHS) to generate
1000 scenarios [46-48]. Then we conducted multivariate
uncertainty and sensitivity analysis to determine the
uncertainty in the performance measure that was due to
the uncertainty in estimating the input parameters. The
descriptive statistics for ω and dT are given in Table 4,
which lists the mean, variance, median, minimum, and
maximum of ω and dT .
Figure 5 shows the empirical cumulative distribution

functions (CDFs) of ω and dT obtained from 1000 LHS
scenarios and Table 5 provides the partial rank corre-
lation coefficients (PRCCs) for the performance mea-
sures and each parameter. The CDF of ω revealed a

Figure 4 Optimal NPI policy obtained under quadratic control cost. Figure 4 presents the optimal NPI policy obtained under quadratic
control cost. (a) presents the optimal NPI policy assuming quadratic control cost for an influenza pandemic characterized as
b = 0.4, g = 0.25, τ = 0.05, c = 0.05, and b = 0.2b. (b) presents the optimal NPI policy assuming quadratic control cost for an influenza pandemic
characterized as b = 0.6, τ = 0.25, g = 0.05, c = 0.05, and b = 0.2b.

Table 3 Parameter ranges. summarizes the estimated
probability distribution functions (PDFs) of five input
parameters, R0, 1/g, 1/τ, c and b.

Parameter Unit Parameter Distribution

R0 cases per infectious individual Gamma(4.56,0.31) [25]

1/g days Weibull(2.8, 3.7) [25]

1/τ days Gamma(3.5, 3.4) [25]

c Uniform(0, 0.25)

b % Uniform(0, 50) [11]

Table 4 Descriptive statistics from the uncertainty
analysis.

Proportion of control
area ω

Mean cumulative
deaths dT

Minimum 0 0.63%

Maximum 98.7% 76.39%

Mean 21.4% 14.25%

Median 0.6% 12.56%

Variance 11.2% 74.81%

Table 4 shows the descriptive statistics for ω and dT .
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wide range of estimates due to the uncertainty in esti-
mating the values of the five input parameters. Sixty
percent of ω estimates are less than 2.3%, with a mini-
mum of 0% and a maximum of 98.7%. For ω, the
PRCCs are all statistically significant, i.e. p < 0.05. The
cost of NPI implementation, c, the time when a death
occurs after infection, 1/τ, and the time for an infec-
tious person to recover, 1/g, are the most statistically
influential (|PRCC| > 0.5). An increase in c or 1/τ cor-
responds to a decrease in ω; while an increase in the
infection period 1/g corresponds to an increase in ω.
The CDF of dT shows that the mean of cumulative
death is 14.25%, with a minimum of 0.63% and a maxi-
mum of 76.39%. For dT, the PRCCs are are all statisti-
cally significant, i.e. p < 0.05. The most statistically
influential inputs are 1/τ, R0, and 1/g (|PRCC| > 0.5)
while the other two parameters are lessinfluential. A
decrease in 1/τ corresponds to an increase in dT; while
an increase in R0 or 1/g corresponds to an increase in
dT .

Sensitivity to exponential terminal time assumption
To test the sensitivity of our control policy to the term-
inal time assumption, we simulated the disease

propagation and studied the outcome of applying our
NPI policy to settings with an exponential and a gamma
terminal time. For each flu scenario specified in the sen-
sitivity analysis, a corresponding NPI policy can be
obtained. We randomly selected a value from Exponen-
tial(0.0056) and a value Gamma(3, 59.5) as the vaccine
arrival time (or simulation terminal time). The sampling
was repeated 20 times for each scenario. Then, we simu-
lated the SIRD system starting from an initial state
applying the corresponding NPI policy. The simulation
was terminated at the sampled vaccine arrival times and
the cumulative deaths were recorded. A total of 210
initial states were selected, where s0 ≥ 80% and i0 ≤
20%, for a total of 210, 000 simulations. We studied the
difference in cumulative deaths under these two vaccine
arrival assumptions. Table 6 lists the descriptive statis-
tics of percentage difference in cumulative deaths for
the same initial states at two terminal times.
Overall, the difference in cumulative deaths under

exponential and gamma terminal times is small (mean =
3.49%). The distribution of difference in cumulative
deaths is left-skewed, with 91.8% of these differences
being less than 10%. There are a few cases where the
cumulative deaths differ significantly (≥ 30%). These
cases all started from initial states where only a small

Figure 5 Empirical CDFs for the proportion of control area and the mean cumulative death obtained from the 1000 LHS scenarios.
Figure 5 shows empirical cumulative distribution functions (CDFs) of ω and dT obtained from 1000 LHS scenarios.
(a) shows the empirical CDF for the proportion of control area, ω. (b) shows the empirical CDF for the mean cumulative death, dT.

Table 5 Partial rank correlation coefficients.

Proportion of control area
ω

Mean cumulative deaths
dT

Parameter PRCC p-value Rank PRCC p-value Rank

R0 0.182 < .0001 4 0.816 < .0001 2

1/g 0.579 < .0001 3 0.747 < .0001 3

1/τ -0.651 < .0001 2 -0.827 < .0001 1

c -0.865 < .0001 1 0.342 < .0001 4

b 0.087 0.0059 5 -0.328 < .0001 5

Table 5 lists the partial rank correlation coefficients (PRCCs) for the
performance measure ω and dT.

Table 6 Descriptive statistics of difference in cumulative
deaths at exponential and gamma terminal time.

Difference in cumulative deaths

Minimum 0

Maximum 32.55%

Mean 3.49%

Median 1.89%

Variance 0.19%

Table 6 lists the summary statistics of difference in cumulative deaths at
exponential and gamma terminal time.
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proportion people are infectious, i.e., i0 ≤ 1%, and the
difference between the selected gamma and exponential
terminal time exceeds 60% of the maximum of these
two. For example, in a case where i0 = 1%, S0 = 95%,
gamma terminal time = 235 days and exponential term-
inal time = 55 days, the difference in cumulative death
is 32.04%.

Discussion
Effect of NPI policies on the epidemic
NPIs reduce and delay the spread of pandemic by mod-
erating social contact between susceptible and infectious
people. Because NPIs disrupt daily societal functions, it
is important that they be implemented judiciously. This
requires identifying effective initiating triggers, which is
a challenging research task. Implementing NPIs will
impede influenza spread; on the other hand, normal
societal functions will be interrupted. The optimal con-
trol method takes both aspects into account and tries to
find the best balance between them, given the decision
makers relative weighting of the two.
Based on Figures 2 and 3, early implementation for

moderate and severe pandemic is very important for
NPIs to have impact on the outbreak and the impact is
effective only if NPIs are implemented early. Late NPI
implementation might still be optimal, but the impact is
much less. For a severe pandemic, it is optimal to trig-
ger NPIs at the beginning stage when susceptible popu-
lation is large and infectious population is small. If we
miss the beginning stage, it is not optimal to implement
NPIs until the outbreak is significantly progressed. This
is because once the pathogen achieves a certain level of
infection, NPIs are not effective against it, and thus are
not worth the cost. That is, the benefit of NPIs at a
stage when the disease has progressed significantly is
less than the cost of NPI implementation. This finding
supports the CDC pandemic mitigation guidelines,
which state that when the pandemic is Category 4 or 5,
all NPIs are recommended for early implementation [7].
Furthermore, earlier NPI implementation reduces and
delays the peak of the outbreak as illustrated Figures 3(a)
and 3(b), which allows additional time for vaccine devel-
opment. If a severe pandemic occurs, hospitals will
experience an overwhelming influx of patients and need
to operate at their surge capacities. Earlier NPI imple-
mentation can reduce the magnitude of infectious at the
peak, which relieves some of the burden on hospitals and
other health care infrastructures. In contrast, NPIs are
not nearly as effective if disease has already spread into
the community as the cases shown in Figures 3(c) and 3
(d). In both cases, NPIs are triggered after the peak of the
outbreak, where hospitals might have already been oper-
ating at their surge capacities for a few weeks. Both cases
start at states falling on the control thresholds

recommended in Figures 2(c) and 2(d)[37]. This finding
indicates that the additional complexity of our model is
warranted when compared with the SI model used in
[37]. Timely and sensitive surveillance systems are key to
successful application of the optimal control method as
knowledge of both the pathogen characteristics and the
community state are assumed. The surveillance systems
should be able to identify the virus quickly and provide
accurate estimates for parameters which characterize the
severity of an influenza. The effectiveness of the control
policy depends on the accuracy of these estimates, which
include infection rate b, death rate τ and recovery rate g.
Once the control policy is computed, we also need to
track the community state to determine if NPIs should
be triggered. As early NPI implementation is found to be
much more effective, we do not want to miss the begin-
ning stage of the outbreak. Thus, the surveillance system
should also estimate the community state, including the
size of the infectious and susceptible populations.

Sensitivity analysis
Our sensitivity analysis identified three important input
parameters for determining the overall NPI intensity.
The important parameters are the NPI cost, death rate,
and recovery rate. For high NPI costs, it is not worth-
while implementing NPIs because the benefit is less
than the cost. For higher death rates, the policy sacri-
fices daily societal functions to save lives. In contrast,
when recovery rate is small, infected people recover
more slowly and continue infecting susceptible people.
Thus, more NPI implementation is required. These
results suggest that an influenza virus with a high death
rate and a small recovery rate requires early intensive
NPI implementation, particularly when the community
places a high value on avoiding death.
Cumulative death was most affected by the death rate,

the basic recovery number and the recovery rate. For
higher death rates, a higher proportion of infected peo-
ple will die. For higher basic reproductive number, more
people will be infected, resulting in more deaths even
when the death rate is smaller. For lower recovery rate,
infected people recover at a slower rate, and thus more
people will be infected. This suggests that an influenza
virus with a high death rate, a high basic reproductive
number and a small recovery rate is less affected by NPI
implementation. NPI cost does not seem to affect the
cumulative death. However, NPI cost was identified as
the most influential (PRCC = -0.865) in determining the
intensity of NPI implementation. Different communities
have different perspectives of death versus disruption of
daily societal functions. The range of c should be deter-
mined by decision makers after carefully evaluating the
demographic, cultural, and economic characteristics of
the community.
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As a performance measure, ω does not capture the
complete structure of the control policy. It only captures
the overall control intensity, but subtle differences
between control policies, such as distribution and shape
of Ω1 in the state space, is missing. Policies that have
different structure in the state space might have same ω
value. Therefore, continued effort should be made in
selecting more refined measures for the control policy
performance.

Linear v.s. quadratic cost function
If the cost function is linear, the control policy is bang-
bang, which suggests implementing NPIs at the maxi-
mum strength or not implementing at all as shown in
Figure 2. If the cost function is nonlinear, for example
the quadratic cases presented in Figure 4, the control
policy has multiple levels, which requires varying the
NPI strengths as the system evolves from one state to
another. It is easily shown from Eqs. 7 and 9 that if the
linear model indicates NPI implementation for a state x,
i.e., u* = b for state x, then the quadratic model also
indicates some implementation in state x, i.e., u* > 0 for
state x. But the inverse is not true. This property can be
proved easily. If u* = b in the linear model, we have ψ(s,
i) < 0, for all (s, i) Î Ω1 according to Eq. 7. So




 V

s
V
i

* * < 0 holds for all (s, i) Î Ω1. Together
with Eq. 9, we have u* > 0 for these states in the quad-
ratic model.
Thus, a quadratic cost structure will require NPIs to

be implemented in more states but with much lower
intensity in those states. Overall, a linear cost structure
leads to higher average NPI intensity than the quadratic
cost. In the examples observed, the boundaries between
control and non-control regions in linear model resem-
ble the quadratic contour lines u* ≈ 50% of maximum
implementation.
Moreover, the linear cost model appears to place more

weight on death, thus implementing more control and
saving more lives as shown in Table 2. In cases with
quadratic cost structure, using a linear model might
result in over-control which would not be marginally
effective. However, quadratic cost introduces additional
complexity in parameter estimation, computation, and
policy interpretation. For example, we must determine
how to implement NPIs at X% of maximum. This
requires determining which NPIs will be implemented
for each control level. The bang-bang policy, on the
other hand, has only two levels, which is easier to under-
stand and implement. Finally, it is not clear that a direct
comparison between policies obtained under linear and
qudratic cost structures is appropriate, because the value
functions are defined differently. More research needs to
be done to better define the NPI levels and interpret the
policy if a non-linear cost function is chosen.

Exponential vaccine arrival time
We are currently not able to derive an optimal control
policy for a general terminal time assumption. Although
the exponential optimal policy will not be optimal for
cases with general terminal time, results shown in
Table 6 indicate that the expected cumulative deaths
predicted by the exponential optimal policy will be close
to those occurring in a more general terminal time case.
This suggests that the impact of the optimal exponential
policy on virus spread is not always sensitive to terminal
time distribution. Although the exponential assumption
might not be completely realistic, making this assump-
tion allows us to obtain the NPI policy, which then
seems to provide desirable impact for cases with non-
exponential terminal times.

Model limitations
Our model was limited in several ways. First, although
HJB can be derived for models assuming general terminal
time (e.g., gamma), so far the control policy can only be
computed assuming exponential terminal time. Second,
the present modeling framework does not capture uncer-
tainty in parameter estimation, i.e. the model accuracy
relies on accurate estimation of input parameters. In
practice, collection of accurate data and estimation of
input parameters from data can be challenging and time
consuming. Third, the present modeling framework
assumes equal effect of various NPIs in a homoge-
neously-mixed population, while different NPIs will have
distinct impacts for disparate population groups. Finally,
bang-bang control must be further refined since it is not
clear that on/off implementation is realistic for larger
communities. To better apply optimal control methods
in disease control problems, continued efforts should be
made to refine the present model and to better estimate
the input parameters.

Conclusions
To conclude, we have considered a problem of non-
pharmaceutical intervention (NPI) implementation for
pandemic control using optimal control theory to
develop triggers that minimize expected person-days
lost associated with infection related death and NPI
implementation over an exponential time horizon. The
best control strategy for the model depends on the
transmission characteristics of the influenza virus, the
state of the pandemic, and the cost and implementation
levels of NPIs.
We present the computed policies under different

transmission characteristics, where it is optimal to acti-
vate all NPIs when the system state falls in the control
region, Ω1. The optimal policy can be calculated for any
combination of flu and cost parameters. We compare
the impacts of NPIs triggered at different states, which
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supports the idea of early containment. For comparison,
we present the NPI policies assuming quadratic control
cost. The quadratic cost assumption introduces addi-
tional complexity into parameter estimation, computa-
tion and policy interpretation, thus more research needs
to be done to better define the NPI levels and interpret
the policy. We perform multivariate sensitivity analysis,
which identifies important parameters that affect the
intensity of control and the outcome of applying the
policy. The findings highlight the importance of estab-
lishing a sensitive and timely surveillance system.
Finally, we study the outcome of applying our NPI pol-
icy under exponential and gamma terminal times, and
find small difference in the cumulative death.
Many uncertainties exist in estimating flu parameters,

future research directions include developing a model
that allows using stochastic rather than deterministic
inputs and updates the control polices in real time.
Since NPI implementation is not mandatory, compliance
to NPI requirements is crucial for successful implemen-
tation. Community engagement, job security, and dis-
ruption of daily life affect compliance to NPI
implementation [7]. Moreover, prolonged outbreak
might result in compliance fatigue. Thus, in future
work, we will integrate time-based compliance models
into the system dynamics. Other important research
directions include consideration of population heteroge-
neity, stochasticity and partial observability in disease
outbreak, and developing methods for general terminal
time distributions.
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