Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Different patterns of HIV-1 DNA after therapy discontinuation

  • Maria Carla Re1Email author,
  • Francesca Vitone1,
  • Laura Sighinolfi2,
  • Pasqua Schiavone1,
  • Florio Ghinelli2 and
  • Davide Gibellini1
BMC Infectious Diseases20055:69

DOI: 10.1186/1471-2334-5-69

Received: 29 April 2005

Accepted: 12 September 2005

Published: 12 September 2005

Abstract

Background

By persisting in infected cells for a long period of time, proviral HIV-1 DNA can represent an alternative viral marker to RNA viral load during the follow-up of HIV-1 infected individuals. In the present study sequential blood samples of 10 patients under antiretroviral treatment from 1997 with two NRTIs, who refused to continue any antiviral regimen, were analyzed for 16 – 24 weeks to study the possible relationship between DNA and RNA viral load.

Methods

The amount of proviral DNA was quantified by SYBR green real-time PCR in peripheral blood mononuclear cells from a selected group of ten patients with different levels of plasmatic viremia (RNA viral load).

Results

Variable levels of proviral DNA were found without any significant correlation between proviral load and plasma HIV-1 RNA levels. Results obtained showed an increase or a rebound in viral DNA in most patients, suggesting that the absence of therapy reflects an increase and/or a persistence of cells containing viral DNA.

Conclusion

Even though plasma HIV RNA levels remain the basic parameter to monitor the intensity of viral replication, the results obtained seem to indicate that DNA levels could represent an adjunct prognostic marker in monitoring HIV-1 infected subjects.

Background

Many papers have clearly demonstrated that HIV-1 RNA plasma viral load quantitative determination is a pivotal parameter to monitor viral replication and the effectiveness of HAART therapy [15]. In addition, a growing number of observations showed that measurement of HIV-1 DNA proviral load could provide crucial information on the reservoir and dynamics of HIV-1 infection [5, 6] since the persistence of HIV-DNA in peripheral blood mononuclear cells (PBMC) and lymph nodes is a major drawback to eradication of infection [7, 8]. Quantitative analysis of proviral DNA in HAART-treated patients showed opposite results: on one hand, the decline in DNA load seemed to indicate the long term impact and effectiveness of retroviral treatment [912], on the other DNA levels remained stable over several years in PI ART naïve patients [2, 13].

Recent studies also indicate that viral replication persists even in individuals with prolonged suppression of plasma HIV-1 RNA levels to fewer than 50 copies/ml [5, 8, 1416], confirming that "undetectable viremia" cannot be considered evidence of complete viral replication suppression. The findings of a slow and/or incomplete decay imply that current HAART regimens do not completely suppress viral replication. However the decreasing morbidity and mortality in HAART-treated HIV-1 seropositive patients and the following restoration, preservation of immunologic function and improvement in quality of life demand the ongoing use of these drugs. The new therapeutic challenge is to find new immunological or pharmacological approaches aimed at purging HIV-1 DNA proviral reservoirs [19]. Several recent studies have addressed structured treatment interruption (STI), as conceivable strategy to stimulate and enhance the immune system HIV-1 specific response to tackle viral replication in the absence of chemotherapy [1719] even though several reports showed that only 10–20% of chronically infected patients achieved a short-term suppression of viral replication [2022].

Since a growing number of studies involving quantification of cellular HIV-1 DNA acknowledge the importance of accurate quantification of proviral DNA in peripheral blood cells for monitoring diseases progression, we selected a small but peculiar group of patients, who decided to interrupt antiretroviral therapy, irrespective of current guidelines [23] and despite virologic failure. In particular, sequential blood samples of 10 patients under antiretroviral treatment from 1997 with two NRTIs, who refused to continue any antiviral regimen, were analyzed for 16 – 24 weeks to study the possible relationship between DNA and RNA viral load.

Methods

Patients

Ten HIV-1 infected adults under antiretroviral treatment since 1997 with two NRTIs (stavudine [D4T] and lamivudine [3TC] or zidovudine [AZT] and lamivudine [3TC] or zidovudine [AZT] and zalcitabina [DDC] or zidovudine [AZT] and didanosine [DDI]) were selected for this study. All these patients refused to continue any antiviral regimen despite an assessed virologic failure (HIV-1 RNA viral load > 50 copies/ml) and were followed-up monthly for a variable period ranging from 16 to 24 weeks up to the moment in which they agreed to begin a new therapeutic protocol. Sequential blood samples were obtained at baseline (time 0: voluntary therapy interruption) and every four weeks (time 1-time 7) and analyzed for viral load (RNA and DNA), and CD4 levels. The baseline characteristics of the patients included in the study are shown in Table 1. All the subjects were enrolled after informed consent according the Helsinki declaration of 1975.
Table 1

Baseline characteristics of HIV infected patients enrolled in the study at time of therapy suspension.

Characteristic

 

Gender

7 males, 3 females

Heterosexual

8

IVDUs

2

Age (mean years ± SD)

36.27 ± 8.32

CD4 count cells × 106 per l (median)

548.45 ± 63 cells/mmc.

Plasma HIV-1 RNA copies/ml (median)

3.7 × 103

HIV-1 RNA quantification

All the whole blood samples were centrifuged at 2500 rpm for 20 min and plasma was stored at -80°C until use. Plasma was analyzed for HIV-1 RNA viral using the Quantiplex HIV-RNA-3.0 assay (Chiron Corporation, Emeryville, CA, USA), according to the manufacturer's instructions. The amount of HIV RNA levels was expressed as copy number per ml of plasma and the lowest detection limit of the assay was 50 copies/ml.

DNA extraction and purification of PBMCs for HIV-1 DNA quantification

Peripheral blood mononuclear cells (PBMC) were isolated from whole blood by Ficoll-Paque gradient separation (Amersham Pharmacia). Cell pellets, corresponding to 5 × 106 PBMC were prepared and stored at -80°C. DNA was extracted and purified from each PBMC pellet by DNAeasy tissue kit (Qiagen) following the manufacturers' instructions. The pGEMBH10 HIV plasmid [8, 14] was purified by Midi plasmid extraction kit (Qiagen, Hilden, Germany) following the manufacturers' instructions. Plasmid and cellular DNA concentration and purity were determined by spectrophotometric analysis at 260/280 nm.

Determination of HIV-1 proviral DNA by SYBR green real-time PCR

SYBR green real-time PCR assay was performed, as previously described [8, 14] in 20 μl PCR mixture volume consisting in 2× Quantitect SYBR Green PCR Master Mix (Qiagen) containing HotStarTaq DNA polymerase, 200 nM of each oligonucleotide primer (SK431, SK462) [24] and 600 ng of DNA extracted from clinical samples (approximately the DNA content of 200.000 cells) or scalar dilution of pGEMBH10 HIV plasmid (from 105 to 10 copies). Initial activation of HotStar Taq DNA Polymerase at 95°C for 15 min; 45 cycles in four steps: 94°C for 10 s, 60°C for 30 s, 72°C for 30 s, 78°C for 3 s. At the end of amplification cycles, melting temperature analysis was carried out by a slow increase in temperature (0.1°C/s) up to 94°C. Amplification, data acquisition and analysis were carried out by a LightCycler instrument (Roche, Mannheim, Germany) using LightCycler 5.3.2 software (Roche). This software, coupled with the LightCycler instrument, determines the threshold cycle (Ct) representing the number of cycles in which the fluorescence intensity is significantly above the background fluorescence. Ct is directly proportional to log10 of the copy number of the input templates with respect to a standard curve generated in parallel. SYBR green molecules bind all double stranded DNA molecules emitting a fluorescent signal, on binding, proportional to the amplicon synthesis during the PCR reaction. This property elicited an accurate analysis of the melting temperature curve of the amplified fragments generated by real-time PCR to determine the detection and quantitation of specific products. Thus the single analysis of fluorescence was performed at 75°C by LightCycler 5.3.2 software in each cycle to rule out any non-specific interference (i.e. dimer primer). All samples from patients were run in duplicate and were also analyzed by SYBR Green real-time PCR for globin gene in a parallel run to check the equal amount in all samples determined by spectrophotometric data as described.

Statistical analysis

Statistical analysis was carried out using Student's t-test or Mann-Whitney test. Correlation was determined by Spearman's rank correlation.

Results

Longitudinal analysis of RNA plasma viral load detection by b-DNA assay

As expected, therapy interruption determined a significant increase in RNA viral load in all HIV-1 seropositive patients enrolled in the study. In particular, all patients' plasma showed a significant (Mann-Whitney test p = 0.036) increase in viral load already one month after therapy interruption (time 1) showing a median value of 1.7 × 104 (4.2 log10) in comparison to 3.7 × 103 copies/ml (3.5 log10) observed at median baseline value (time 0). Moreover, plasma viral load reached higher levels [median value of 1,1 × 105 HIV-1RNA copies/ml (5 log10)] at the end of observation period (p = 0.014) (Table 2). Hence, we assessed an increase in viral replication ranging from 0.5 log10 to more than 1 log10 at the end of observation period (p = 0.00).
Table 2

Longitudinal values of HIV RNA and DNA viral load, CD4 levels in patients on long term treatment with two NRTIs from therapy suspension (time 0) onwards.

 

RNA Viral Load (copies/ml)

DNA Viral Load (copies/106PMBCs)

CD4 cell count (x106cells/L)

 

RNA Viral Load (copies/ml)

DNA Viral Load (copies/106PMBCs)

CD4 cell count (x106cells/L)

Pt 1

   

Pt6

   

Time0

6300

 

335

Time0

2940

 

625

Time1

20800

1600

324

Time1

2500

1100

625

Time2

30000

2200

324

Time2

16000

1400

529

Time3

58000

1800

340

Time3

7800

630

625

Time4

100000

2000

300

Time4

25000

620

552

Time5

120000

3800

220

Time5

24000

730

750

Pt2

   

Time6

17000

890

483

Time0

11000

 

345

Pt 7

   

Time1

22000

1200

345

Time0

1600

 

462

Time2

70000

1900

365

Time1

6800

920

450

Time3

100000

1500

256

Time2

1700

750

456

Time4

150000

1000

304

Time3

4400

910

384

Time5

148000

770

240

Time4

4000

690

380

Time6

170000

990

238

Time5

2700

400

399

Pt3

   

Time6

2800

300

342

Time0

3600

 

551

Pt8

   

Time1

43000

2300

448

Time0

3970

 

616

Time2

58100

820

266

Time1

4000

1000

616

Time3

49000

580

560

Time2

85000

660

532

Time4

58000

990

360

Time3

100000

490

361

Pt4

   

Time4

84000

230

420

Time0

1220

 

572

Time5

74000

330

456

Time1

1400

1300

570

Time6

100000

550

460

Time2

24000

1890

522

Pt9

   

Time3

46000

960

572

Time0

10500

 

680

Time4

27000

500

576

Time1

14000

1500

624

Time5

32000

700

432

Time2

16000

1000

480

Time6

31000

550

348

Time3

39000

450

588

Pt5

   

Time4

33000

1100

520

Time0

4900

 

494

Time5

145000

3100

390

Time1

93000

1500

528

Pt10

   

Time2

100000

1050

483

Time0

1130

 

578

Time3

150000

830

460

Time1

69000

612

420

Time4

250000

1000

404

Time2

66000

1200

320

    

Time3

100000

1600

350

    

Time4

210000

2800

267

Longitudinal analysis of PBMC DNA proviral load detection by quantitative real time PCR assay

In parallel experiments, we quantified proviral DNA load in PBMC isolated from patients' whole blood sequential samples at fixed times after therapy suspension. The median number of samples available for each patient was five [1 month after the therapy suspension (time 1) and then each month up to the end of observation period], ranging from two to seven. The median follow-up was 5.5 (4–7) months.

The majority of patients showed a fluctuating trend in DNA viral load. Three patients (N°1, N°9 and 10) showed an increase in DNA viral load detectable from the first through to the last available sample. Even though DNA amount reached a significantly (considered as a variation of 0.5 – 1 log10) higher value only in samples from patients N°1 and N°10 (from 3.2 log10 to 3.7 log10 and from 2.7 log10 to 3.4 log10 respectively), sequential PBMC samples obtained from patient N°9 exhibited a clear tendency to increase (and from 3.1 log10 to 3.5 log10 copy of HIV-1 DNA per 106 PBMCs respectively) redoubling the DNA content. Moreover, most of the other samples obtained from patients N°2, N°3, N°4, N°5 and N°6 showed a swinging course. After an apparent decline in proviral DNA content during the follow-up, in the latest samples a moderate increase in proviral DNA load was observed in PBMC from all patients. In contrast, a decrease of HIV-1 proviral DNA content was noticed from a baseline value of 1.3 × 103 copies per ml (3.1 log10) to 5.5 × 102 HIV-1 DNA copies per ml (2.7 log10) and from 9.2 × 102 (2.9 log10) to 3.0 × 102 (2.4 log10) in patients N°4 and 7 only.

As expected, a statistical analysis of PBMCs HIV proviral DNA content and plasma RNA viral load of all 10 patients failed to disclose any significant correlation between HIV-1 proviral DNA load and HIV-1 RNA viral load (Mann-Wittney test) confirming our previous data [14].

CD4 cell count determination

All the patients enrolled in the study showed a CD4 reduction during the follow-up. All patients, except two (Patients N°1 and N°2), interrupted therapy with a level of CD4 cells >400 cells/mmc and, as expected, showed a sharp [(N°1 and N°3 (34% reduction), N°2 (31% reduction), N°4 (39%), N°9 (42%), N°10 (53%)] decrease or a moderate decline [N°5 (18% reduction), N°6 (22% reduction) N°7 and 8 (25% reduction)] at the end of our observation period. No correlation was found (r = 0.5, p > 0.005) between the course of DNA viral load and CD4 levels, but high RNA levels were significantly associated with lower CD4 counts, demonstrating a significant inverse correlation between CD4+ cell counts and HIV-1 RNA levels (p = 0.001).

Discussion

During recent years, planned therapy interruption has been entertained in specific clinical situations even though the potential role of this choice with respect to the balance between risk of disease progression and potential benefits remains to be elucidated. Our study focused on a peculiar group of patients who voluntary opted to suspend antiretroviral therapy for a variable period of time, ranging from five to seven months, despite of virologic failure. Our follow-up ceased when patients agreed to a new therapeutic protocol.

Our study aimed to evaluate the virologic evolution of these subjects focusing on DNA proviral load course, since accurate quantification of HIV-1 DNA in peripheral blood cells is an important parameter for monitoring disease progression and predicting the clinical outcome of infection [3, 2729]. Several studies, mostly addressed to patients under different therapy protocols, have shown that the evaluation of DNA content may have important implications for understanding the virological response to combination therapy [25, 26]. Even thought the plasma HIV-1 RNA load is widely considered a direct indicator of viral replication in infected individuals, the formation, stability and turnover of potentially infectious virus in the HIV-1 DNA proviral pool has important indication for the understanding of HIV pathogenesis [5, 6, 11]. Moreover, Vitone et al. [8] recently demonstrated that the decrease in HIV-1 DNA proviral load is inversely correlated to CD4 level in HIV-1 seropositive patients with a persistently undetectable viremia (HIV-1 RNA viral load).

Current data on course of DNA viral load during infection are inconclusive [19], but most studies suggest that HIV-1 DNA proviral quantification is useful to monitor the decay of the HIV reservoir towards disease remission, distinguishing "responder" from "non responder" patients [3, 28].

Our results, obtained from patients, therapy-free during the virolgical follow-up, showed a viral rebound, one month after therapy suspension, assessed by plasma RNA values in all patients. The analysis of HIV-1 DNA proviral content displayed a clear increase from the baseline value in three patients, confirming that an active viral replication results in elevated viremia (HIV-1 RNA load) and in an increased number of cells containing viral DNA [27, 28]. Also, patients who showed an apparent decrease in DNA copy number during the first step of our follow-up, came to present a rebound of DNA in PBMCs at the end of observation period. These observations might suggest that previous therapy controlled the amount of viral DNA only for a limited period of time and a likely viral rebound, as assessed by an increase in DNA amount, was observed only some months later.

Finally, in contrast with other patients, two subjects showed a clear HIV-1 DNA proviral decrease over time, in the absence of therapy and a steady HIV-1 RNA viral load detectable in plasma samples. In both cases a HIV-1 DNA proviral decline due to a long lasting effect of therapy could be ruled out, since both patients showed high levels of viral replication by increasing value of HIV-1 RNA viral load over time. In an attempt to explain the course of HIV-1 DNA proviral in these subjects, we had to take into consideration that our assay, a SYBR green based real time PCR measures both integrated and unintegrated HIV-1 DNA form on PBMCs. There is evidence that only a fraction of integrated and unintegrated HIV-1 DNA is replication competent [25]. Hence, it is possible that most of the HIV-1 DNA, displayed in our two patients, might be mainly represented by integrated DNA fully capable of initiating HIV replication. Our data are confined to results related to proviral DNA in PBMCs, even if we must consider that viral load is also sustained by lymph node trapped CD4 T cells and other non circulating elements [6] that preserve replication competent virus for long periods. In the absence of therapy, a large number of HIV-1 DNA proviral copies might replicate, as assessed by the HIV-1 RNA viral load increase, leading to a relative decline of cellular DNA. In addition, we cannot exclude a further increase in DNA content in a longer follow-up.

Despite contrasting reports on the meaning of DNA proviral content in HIV-1 seropositive patients [2, 5, 912], our data obtained on closely controlled patients, emphasize the interest of studying DNA proviral content in HIV-1 infected patients. Even though it is impossible to define a proviral DNA threshold for use in clinical practice, several data showed that patients with high proviral DNA levels are more likely to experience virological failure than those with lower proviral DNA loads [11]. Moreover the proviral load probably reflects individual parameters because host genetic factors and response to treatment probably are involved in the constituting the pool of infected cells [30, 31]. Although RNA viral load provides important information on viral replication, HIV-1 DNA proviral load can be considered an additional marker to provide crucial information, not only during the follow-up of patients under therapy but also for individuals included in structured therapy interruptions protocols. Data obtained from our patients, who were not part of antiretroviral protocols [23], yield important information on the persisting timing of DNA in PBMCs.

Conclusion

Only careful evaluation of virological and immunological markers is necessary to fully characterize the course of HIV-1 infection and to provide a more complete laboratory-based assessment of disease progression. However, the availability of a new standardized assay such as DNA proviral load will be important to assess the true extent of virological suppression in patients with non-quantifiable plasma viral loads and to verify the efficacy of new immune-based therapies aimed at purging HIV-1 DNA reservoirs. Although the biological meaning of DNA proviral load in PBMCs is not yet clear, several studies [2, 3, 6, 10] suggest that HIV-1 cellular DNA load may be an indicator of spread of infection whereas the plasma RNA load is indicates active infection [2]. However the qualitative and quantitative evaluation of both plasma HIV RNA genome and HIV-1 proviral DNA might prove crucial to understanding the course of HIV-1 infection.

Declarations

Acknowledgements

This work was supported by the "AIDS projects" of the Italian Ministry of Health, funds for selected research topics of the University of Bologna and MURST 60%.

We thank Ms Anne Collins for editing the manuscript.

Authors’ Affiliations

(1)
Department of Clinical and Experimental Medicine, Section of Microbiology, University of Bologna
(2)
Department of Infectious Diseases, St Anna Hospital

References

  1. Brostrom C, Visco-Comandini U, Yun Z, Sonnerborg A: Longitudinal quantification of human immunodeficiency virus type 1 DNA and RNA in long-term nonprogressors. J Infect Dis. 1999, 179: 1542-1548. 10.1086/314757.View ArticlePubMedGoogle Scholar
  2. Kostrikis LG, Touloumi G, Karanicolas R, Pantazis N, Anastassopoulou C, Karafoulidou A, Goedert JJ, Hatzakis A, Multicenter Hemophilia Cohort Study Group: Quantitation of human immunodeficiency virus type 1 DNA forms with the second template switch in peripheral blood cells predicts disease progression independently of plasma RNA load. J Virol. 2002, 76: 10099-10108. 10.1128/JVI.76.20.10099-10108.2002.View ArticlePubMedPubMed CentralGoogle Scholar
  3. McDermott JL, Giri AA, Martini I, Bono M, Giacomini M, Campelli A, Tagliaferro L, Cara A, Varnier OE: Level of human immunodeficiency virus DNA in peripheral blood mononuclear cells correlates with efficacy of antiretroviral therapy. J Clin Microbiol. 1999, 37: 2361-2365.PubMedPubMed CentralGoogle Scholar
  4. Riva E, Antonelli G, Scagnolari C, Pistello M, Capobianchi MR, Monforte A, Pezzotti P, Dianzani F, I.CO.N.A. Study Group: Human immunodeficiency virus (HIV) DNA load and level of immunosuppression in treatment-naïve HIV-1-infected patients. J Infect Dis. 2003, 187: 1826-1828. 10.1086/375251.View ArticlePubMedGoogle Scholar
  5. Ramratnam B, Mittler JE, Zhang L, Boden D, Hurley A, Fang F, Macken CA, Perelson AS, Markowitz M, Ho DD: The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nat Med. 2000, 6: 82-85. 10.1038/71577.View ArticlePubMedGoogle Scholar
  6. Nickle DC, Shriner D, Mittler JE, Frenkel LM, Mullins JI: Importance and detection of virus reservoirs and compartments of HIV infection. Curr Opin Microbiol. 2003, 6: 410-416. 10.1016/S1369-5274(03)00096-1.View ArticlePubMedGoogle Scholar
  7. Brun-Vezinet F, Boucher C, Loveday C, Descamps D, Fauveau V, Izopet J, Jeffries D, Kaye S, Krzyanowski C, Nunn A, Schuurman R, Seigneurin JM, Tamalet C, Tedder R, Weber J, Weverling GJ: HIV-1 viral load, phenotype, and resistance in a subset of drug-naive participants from the Delta trial. The National Virology Groups. Delta Virology Working Group and Coordinating Committee. Lancet. 1997, 350: 983-90. 10.1016/S0140-6736(97)03380-1.View ArticlePubMedGoogle Scholar
  8. Vitone F, Gibellini D, Schiavone P, Re MC: Quantitative DNA proviral detection in HIV-1 patients treated with antiretroviral therapy. J Clin Virol. 2005,Google Scholar
  9. Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, Lloyd AL, Nowak MA, Fauci AS: Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 1997, 94: 13193-13197. 10.1073/pnas.94.24.13193.View ArticlePubMedPubMed CentralGoogle Scholar
  10. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, Gallant J, Markowitz M, Ho DD, Richman DD, Siliciano RF: Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997, 278: 1295-300. 10.1126/science.278.5341.1295.View ArticlePubMedGoogle Scholar
  11. Pellegrin I, Caumont A, Garrigue I, Merel P, Schrive MH, Fleury H, Dupon M, Pellegrin JL, Ragnaud JM: Predictive value of provirus load and DNA human immunodeficiency virus genotype for successful abacavir-based simplified therapy. J Infect Dis. 2003, 187: 38-46. 10.1086/345860.View ArticlePubMedGoogle Scholar
  12. Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD: Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997, 278: 1291-1295. 10.1126/science.278.5341.1291.View ArticlePubMedGoogle Scholar
  13. Hockett RD, Saag MS, Kilby JM, Sfakianos G, Wakefield TB, Bucy RP: Stability in the HIV vDNA pool in peripheral CD4+ T cells of untreated patients by single tube quantitative PCR. J Virol Methods. 2000, 87: 1-12. 10.1016/S0166-0934(00)00139-7.View ArticlePubMedGoogle Scholar
  14. Gibellini D, Vitone F, Schiavone P, Ponti C, La Placa M, Re MC: Quantitative detection of human immunodeficiency virus type 1 (HIV-1) proviral DNA in peripheral blood mononuclear cells by SYBR green real-time PCR technique. J Clin Virol. 2004, 29: 282-9. 10.1016/S1386-6532(03)00169-0.View ArticlePubMedGoogle Scholar
  15. Furtado MR, Callaway DS, Phair JP, Kunstman KJ, Stanton JL, Macken CA, Perelson AS, Wolinsky SM: Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. N Engl J Med. 1999, 340: 1614-22. 10.1056/NEJM199905273402102.View ArticlePubMedGoogle Scholar
  16. Zhang L, Ramratnam B, Tenner-Racz K, He Y, Vesanen M, Lewin S, Talal A, Racz P, Perelson AS, Korber BT, Markowitz M, Ho DD: Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med. 1999, 340: 1605-1613. 10.1056/NEJM199905273402101.View ArticlePubMedGoogle Scholar
  17. Florence E, Garcia F, Plana M, Fumero E, Castro P, Lopez A, Cruceta A, Gil C, Arnedo M, Miro JM, Pumarola T, Gallart T, Gatell JM: Long-term clinical follow-up, without antiretroviral therapy, of patients with chronic HIV-1 infection with good virological response to structured treatment interruption. Clin Infect Dis. 2004, 39: 569-574. 10.1086/422720.View ArticlePubMedGoogle Scholar
  18. Yerly S, Gunthard HF, Fagard C, Joos B, Perneger TV, Hirschel B, Perrin L, Swiss HIV Cohort Study: Proviral HIV-DNA predicts viral rebound and viral setpoint after structured treatment interruptions. AIDS. 2004, 18: 1951-1953. 10.1097/00002030-200409240-00011.View ArticlePubMedGoogle Scholar
  19. Gallo RC: New concepts for future control of HIV derived from studies of pathogenesis. Int J Antimicrob Agents. 2000, 16: 421-423. 10.1016/S0924-8579(00)00297-1.View ArticlePubMedGoogle Scholar
  20. Oxenius A, Hirschel B: Structured treatment interruptions in HIV infection: benefit or disappointment?. Expert Rev Anti Infect Ther. 2003, 1: 129-139. 10.1586/14787210.1.1.129.View ArticlePubMedGoogle Scholar
  21. Carcelain G, Tubiana R, Samri A, Calvez V, Delaugerre C, Agut H, Katlama C, Autran B: Transient mobilization of human immunodeficiency virus (HIV)-specific CD4 T-helper cells fails to control virus rebounds during intermittent antiretroviral therapy in chronic HIV type 1 infection. J Virol. 2001, 75: 234-241. 10.1128/JVI.75.1.234-241.2001.View ArticlePubMedPubMed CentralGoogle Scholar
  22. Ortiz GM, Wellons M, Brancato J, Vo HT, Zinn RL, Clarkson DE, Van Loon K, Bonhoeffer S, Miralles GD, Montefiori D, Bartlett JA, Nixon DF: Structured antiretroviral treatment interruptions in chronically HIV-1-infected subjects. Proc Natl Acad Sci U S A. 2001, 98: 13288-13293. 10.1073/pnas.221452198.View ArticlePubMedPubMed CentralGoogle Scholar
  23. Guidelines for the Use of Antiretroviral Agents in HIV-1-infected adults and adolescents. October 29, 2004, [http://www.aidsinfo.nih.gov]
  24. Christopherson C, Kidane Y, Conway B, Krowka J, Sheppard H, Kwok S: PCR-Based assay to quantify human immunodeficiency virus type 1 DNA in peripheral blood mononuclear cells. J Clin Microbiol. 2000, 38: 630-634.PubMedPubMed CentralGoogle Scholar
  25. Hatzakis AE, Touloumi G, Pantazis N, Anastassopoulou CG, Katsarou O, Karafoulidou A, Goedert JJ, Kostrikis LG: Cellular HIV-1 DNA load predicts HIV-RNA rebound and the outcome of highly active antiretroviral therapy. AIDS. 2004, 18: 2261-2267. 10.1097/00002030-200411190-00006.View ArticlePubMedGoogle Scholar
  26. Tierney C, Lathey JL, Christopherson C, Bettendorf DM, D'Aquila RT, Hammer SM, Katzenstein DA: Prognostic value of baseline human immunodeficiency virus type 1 DNA measurement for disease progression in patients receiving nucleoside therapy. J Infect Dis. 2003, 187: 144-8. 10.1086/345870.View ArticlePubMedGoogle Scholar
  27. Strain MC, Little SJ, Daar ES, Havlir DV, Gunthard HF, Lam RY, Daly OA, Nguyen J, Ignacio CC, Spina CA, Richman DD, Wong JK: Effect of Treatment, during Primary Infection, on Establishment and Clearance of Cellular Reservoirs of HIV-1. J Infect Dis. 2005, 191: 1410-1418. 10.1086/428777.View ArticlePubMedGoogle Scholar
  28. Kabamba-Mukadi B, Henrivaux P, Ruelle J, Delferriere N, Bodeus M, Goubau P: Human immunodeficiency virus type 1 (HIV-1) proviral DNA load in purified CD4+ cells by LightCycler real-time PCR. BMC Infect Dis. 2005, 21 (5): 15-10.1186/1471-2334-5-15.View ArticleGoogle Scholar
  29. Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD: Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997, 278: 1291-1295. 10.1126/science.278.5341.1291.View ArticlePubMedGoogle Scholar
  30. Berger EA, Murphy PM, Farber JM: Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999, 17: 657-700. 10.1146/annurev.immunol.17.1.657.View ArticlePubMedGoogle Scholar
  31. O'Brien TR, McDermott DH, Ioannidis JP, Carrington M, Murphy PM, Havlir DV, Richman DD: Effect of chemokine receptor gene polymorphisms on the response to potent antiretroviral therapy. AIDS. 2000, 14: 821-6. 10.1097/00002030-200005050-00008.View ArticlePubMedGoogle Scholar
  32. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2334/5/69/prepub

Copyright

© Carla Re et al; licensee BioMed Central Ltd. 2005

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement