Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Shorter courses of parenteral antibiotic therapy do not appear to influence response rates for children with acute hematogenous osteomyelitis: a systematic review

  • Nicole Le Saux1, 2Email author,
  • Andrew Howard3,
  • Nicholas J Barrowman1, 4, 5,
  • Isabelle Gaboury4,
  • Margaret Sampson4 and
  • David Moher1, 4
BMC Infectious Diseases20022:16

DOI: 10.1186/1471-2334-2-16

Received: 26 April 2002

Accepted: 14 August 2002

Published: 14 August 2002

Abstract

Background

Acute hematogenous osteomyelitis (AHO) occurs primarily in children and is believed to evolve from bacteremia followed by localization of infection to the metaphysis of bones. Currently, there is no consensus on the route and duration of antimicrobial therapy to treat AHO.

Methods

We conducted a systematic review of a short versus long course of treatment for AHO due primarily to Staphylococcus aureus in children aged 3 months to 16 years. We searched Medline, Embase and the Cochrane trials registry for controlled trials. Clinical cure rate at 6 months was the primary outcome variable, and groups receiving less than 7 days of intravenous therapy were compared with groups receiving one week or longer of intravenous antimicrobials.

Results

12 eligible prospective studies, one of which was randomized, were identified. The overall cure rate at 6 months for the short course of intravenous therapy was 95.2% (95% CI = 90.4, 97.7) compared to 98.8% (95% CI = 93.6, 99.8) for the longer course of therapy. There was no significant difference in the duration of oral therapy between the two groups.

Conclusions

Given the potential increased morbidity and cost associated with longer courses of intravenous therapy, this finding should be confirmed through a randomized controlled equivalence trial.

Background

Acute hematogenous osteomyelitis (AHO) occurs mainly in children and is more common in males [13]. AHO is believed to evolve from bacteremia followed by localization of infection to the metaphysis of bones. Successful treatment of AHO is crucial for the prevention of morbidity and functional loss of the affected limb.

Currently, there is no consensus on the route and duration of antimicrobial therapy to treat AHO. The suggested duration of intravenous therapy ranges from 3 days to 4 to 6 weeks. One general pediatric textbook describes 7 days of parenteral therapy as standard, [4] whereas a pediatric infectious diseases textbook states that the usual duration of therapy is 4 to 8 weeks with a change to oral medication permissible when signs of local inflammation has resolved [5]. A standard orthopedic textbook suggests intravenous therapy for 5 days followed by oral therapy for 4 to 6 weeks for "typical" cases [6].

Given the paucity of randomized controlled trial evidence to guide clinicians in the management of children with AHO, they have typically relied on data presented in observational studies. The vast majority of these studies have used a cohort design. Here, a group of children diagnosed with AHO are identified and treated using antibiotic therapy. The results are usually reported as successful response rates following a specified period of treatment (e.g., 14 days).

Two studies, each including over 100 children, suggest at least 3 weeks of intravenous antimicrobial therapy for the treatment of AHO in children. In these two studies, success rates of 82% and 81% were observed in children treated with intravenous antibiotics for less than 21 days [7, 8]. There is, however, wide variation between studies regarding failure rates according to treatment duration. A series of smaller studies quoting 1 to 52 days of parenteral antimicrobial therapy have reported success rates ranging from 81% to 100% [925]. The aim of our systematic review was to determine whether short courses (less than 1 week) of parenteral antimicrobial therapy show equivalent cure rates compared with longer courses (greater than 1 week) in children with AHO caused primarily by Staphylococcus aureus.

Methods

Search strategy

Medline and EMBASE were searched electronically to help identify relevant literature from January 1966 to April 2001. The Cochrane Controlled Trials Register, Cochrane Library was searched from 1981 to July 2000. There were no restrictions on language or publication status. The literature was monitored throughout the course of the project by periodically re-running the search in Medline and screening newly posted citations. (Please see additional file 1)

Inclusion criteria

Studies were included if they involved children between 3 months and 16 years of age. The clinical criteria used for the diagnosis of AHO was: (a) positive culture of Staphylococcus aureus from bone or periosteum; or (b) clinical signs of osteomyelitis and a concurrent positive blood culture; or (c) clinical signs and a compatible radiological study (nuclear scan or radiography). Clinical signs were to include swelling, warmth, tenderness and decreased ability to weight bear.

The study design had to meet 3 eligibility criteria: 1) the study had to be prospective cohort; 2) the intervention had to identify the antimicrobial and its route (parenteral or oral) and duration of therapy; and 3) the outcome after an average of 6 months of follow up had to be stated or inferable as clinical cure, failure or relapse.

Study selection

Titles and abstracts of each citation were downloaded to a reference database. Two authors (NLS, AH) independently screened each citation to determine whether to retain it. Potentially relevant citations were retrieved and then subjected to a relevance assessment using our eligibility criteria. Open consensus was used to settle differences.

Data abstraction

Once a study met the inclusion criteria, two members of the research team (NLS; AH) independently abstracted data using structured data abstraction forms. We captured information about the report (e.g., language of publication), design (e.g., cohort), population (e.g., diagnosis), intervention (e.g., type of antibiotic), and primary outcome (e.g., response rates). If more than one cohort was present in a study, data from each cohort was abstracted separately. Disagreements were resolved by consensus.

Data analysis

Treatment of seven days or less of parenteral therapy was considered short course. In many institutions the, typical time required for defervescence, observation, and arrangement of follow-up is about seven days. We thought that this was a practical point at which to dichotomize for the purposes of analysis.

When all children are cured, normal theory based confidence intervals for the proportion cured are unavailable, and when cure rates are close to 100%, normal theory based confidence intervals may provide poor approximations. To overcome these problems, Wilson score confidence intervals were computed [26]. Under the hypothesis of homogeneity of cure rates across cohorts, a fixed-effect estimate of the overall cure rate is provided by the total number of cured patients divided by the total number of patients. The same estimate is provided by an intercept-only logistic regression model. To test the homogeneity of cure rates, the residual deviance from the logistic regression model was compared to a chi-square distribution with degrees of freedom given by the number of cohorts minus one.

Cohorts with different treatments within the same study were analyzed as separate parallel groups. The difference between the overall cure rate under short- and long-term parenteral antimicrobial therapy was assessed using a z-test. Using the same methods, we performed a sub-group analysis comparing overall cure rates for beta-lactams and macrolides. The difference in mean length of oral therapy for cohorts that had short- and long-term parenteral antimicrobial therapy was assessed using a t-test. Unlike parallel-arm studies, where selective publication of statistically significant results may produce publication bias, quite different publication issues may apply to single-arm cohort studies. The funnel plot, often used to assess publication bias, is therefore not relevant in this review.

Results

A flow diagram of the search results is illustrated in Figure 1. Two hundred and eighty-four articles were identified initially. Of these, 57 articles were considered potentially relevant. Of these, 34 were small or mixed case series or had a retrospective study design. Of the remaining 23, 11 studies that appeared to be prospective cohorts had either unusable data, short follow-up or the duration of antimicrobial could not be discerned from the data presented (Table 1). Of the remaining 12 studies, 11 that were of a prospective design were included in the systematic review [2737]. In some cases, only a subset of patients were eligible for inclusion (see notes in Table 2). We excluded one study of 25 children [38] as it was a different study architecture. It is inappropriate to combine estimates of effectiveness (i.e., cure rates) from different study types.
Figure 1

Flow diagram outlining the results of literature search and review of studies retrieved.

*Kaplan [38] is not included in the analysis because it is methodologically dissimilar from the other cohorts

Table 1

Studies which were excluded and the principle reason for exclusion

Study

Reason For Exclusion

Unkila-Kallio 1993

Mainly epidemiologic data. Appears to be the cohort from which Peltola 1997 is drawn.

Dones 1994

Small prospective cohort of 4 patients evaluating teicoplanin.

Nelson 1982

Study addressed bactericidal titers. Follow-up did not extend to 6 months although reported cure rate was 95% with an average duration of 5 days of intravenous antimicrobials.

Beauvais 1981

Addressed the use of pristinamycin orally. Data was not usable because group could not be reliably separated for route and type of antimicrobial.

Fleming 1970

No follow-up data available. Trial focussed on microbiology and side effects of treatment.

Nussinovitch 1997

Data on osteomyelitis cases alone could not be extracted. Maximum follow-up was about 4 months. Cure appeared to be 95% with mean duration of IV antibiotics of 13.7 days.

Walker 1973

Follow-up was 4 months. Mean duration of intravenous antimicrobials in 14 children was 4.21 days (range 2–21 days) and cure was 100%.

Bandelon 1988

Group of osteomyelitis and septic arthritis could not be separated with respect to length of therapy or etiology.

Kulhanjianv 1989

Only 3 cases of osteomyelitis due to S. aureus.

Aronoff 1986

Of 9 children only 1 child had osteomyelitis alone. No follow-up.

Learmonth 1984

Combined patients with septic arthritis and osteomyelitis. Could not extract data with respect to S. aureus alone.

Table 2

Description of studies and the associated cure rates

Author

Publication year

Sample size1

S. aureus positive culture (%)

Parenteral (IV) antimicrobial

Days of IV

treatment Mean

(range)

Oral

antimicrobial

Days of oral

treatment Mean

(range)

Cure rate % (CI)

Long Course

Kolyvas2

1980

5

50.03

Cephradine +/-

Ampicillin

28 (28–28)

Cephradine or

Cloxacillin

18 (14–35)

100

(67, 100)

Tetzlaff

1978

18

100.0

Methicillin or

Cefazolin

8 (7–13)

Cephalexin or

Penicillin V

20 (13–42)

94

(77, 100)

Bryson

1979

18

100.0

Oxacillin or

Methicillin

7 (5–14)

Dicloxacillin

N/A (28–56)

100

(89, 100)

Rodriguez

1977

21

90.5

Clindamycin4

25 (21–28)

Clindamycin

42 (42–42)

100

(91, 100)

Prober

1979

22

100.0

Nafcillin or

Methicillin

145 (4–28)

Dicloxacillin

283 (N/A)

100

(91, 100)

Short Course

Kolyvas2

1980

5

50.03

 

3 (N/A)

Cephradine or

Cloxacillin

423 (39–60)3

100

(67, 100)

Refass6

1989

6

98.9

Cloxacillin

N/A (5–6)

Flucloxacillin

N/A (7–200)3

100

(72, 100)

Freij

1987

8

100.0

Imipenem +

Cilastatin

5.5 (4–9)

Cefaclor or

Dicloxacillin or Cephalexin or

Bacampicillin or Penicillin V

15 (13–19)

88

(55, 100)

Feigin7

1975

11

72.7

Clindamycin

6 (3–13)

Clindamycin

425 (N/A)

91

(65, 100)

Geddes8

1977

18

65.03

Clindamycin

63 (N/A)

Clindamycin

903 (N/A)

94

(77, 100)

Cole9

1982

48

94.5

Cloxacillin or

Cephalothin

3 (2–5)

Cloxacillin or

Cephalexin

39 (37–40)

92

(81, 97)

Peltola

1997

50

100.0

Cephradine or

Cephalothin or

Clindamycin

4 (4–6)

Cefadroxil or

Clindamycin

19 (17–19)

100

(96, 100)

1 Includes cases that were due to Staphylococcus aureus and those who were culture negative 2 Included only the cases that had osteomyelitis alone or had contiguous arthritis and osteomyelitis. 3 Estimated value. 4 Clindamycin is the only macrolide studied – all other antimicrobials mentioned are beta-lactams. 5 Median reported. 6 Only the 6 patients who clearly met the diagnostic criteria were included. 7 Data abstracted from the 11 cases of osteomyelitis (8 of whom had S. aureus). 8 Only data for the 18 children with acute osteomyelitis from the study were included. Some of these may only have received oral medication. 9 Data from the 48 patients for whom there was follow-up of greater than 6 months.

The range of duration of parenteral antimicrobial therapy was 3 to 28 days. Table 2 shows details of the 12 cohort studies that were used in the analysis. Figure 2 graphically illustrates the cure rate versus the duration of parenteral antimicrobial therapy for these cohorts. (Figure 2)
Figure 2

Cure rate versus the duration of parenteral antimicrobial therapy Long-term parenteral antimicrobials is defined as greater than or equal to 7 days. Short-term parenteral antimicrobials is defined as less than 7 days

The 7 cohorts that had less than 7 days of intravenous therapy (n = 146) had a pooled cure rate of 95.2% (95% confidence interval: 90.4, 97.7) [2832, 35, 37]. There was no significant heterogeneity among their cure rates (chi-square= 8.2 on 6 df, p= 0.224), indicating that the variation in cure rates could be attributed to sampling error.

The 5 cohorts who had a duration of intravenous therapy of 7 days or longer (n = 84) had a pooled cure rate of 98.8% (95% confidence interval; 93.6, 99.8) [27, 31, 33, 34, 36]. There was no significant heterogeneity among these cure rates (chi-square = 3.1 on 4 df, p = 0.537). Pooling all of the cohorts regardless of duration of intravenous therapy, there was no significant heterogeneity among cure rates (chi-square = 13.7 on 11 df, p = 0.248). The fixed effects model gave a pooled cure rate of 96.5% (95% confidence interval; 93.3, 98.2). There was no significant difference in the cure rate between the two groups (z-test p-value 0.838).

Comparing beta-lactams and macrolides, there was no significant heterogeneity within either group (beta-lactams; chi square = 7.3 on 7 df, p = 0.394. macrolides; chi square = 5.2 on 4 df, p= 0.159). The pooled cure rate for beta-lactams was 95.4% (95% confidence interval; 90.3, 97.9) under a fixed effects model. The pooled cure rate for macrolides was 98.0% (95% confidence interval; 93.0, 99.4). There was no significant difference in the cure rate between the two groups (z-test p-value 0.286).

Since the total duration of antimicrobial therapy (i.e., parenteral plus oral) can affect the cure rate, we also looked at the duration of oral therapy. For the cohorts that had less than 1 week of parenteral therapy, the range of duration of oral therapy was 15 to 39 days with a mean of 32 days [2831, 35, 37]. We could not reliably determine the mean number of days of oral antimicrobials from one study [32]. For the cohorts that were given a longer duration of intravenous therapy, the range of duration of oral therapy was 18 to 56 days with a mean of 33 days [27, 31, 33, 34, 36]. There was no significant difference in the duration of oral therapy between the two groups (t-test p-value 0.888).

Among the group who had short-term antimicrobials, the percentage of children that had surgery ranged from 30% to 'routine' or probably over 90% [2831, 35, 37]. Two authors did not state the percentage of children who required surgery [29, 32]. Among the long-term group, the range is from 50 to 90% [27, 31, 33, 34, 36]. It was not stated explicitly in most cases whether these procedures were for diagnostic or therapeutic purposes.

The number of children with septic arthritis in the short course group ranged from 0 to 40% [29, 31, 35, 37]. In three studies the exact number could be deduced, [28, 30, 32] whereas in the 5 cohorts who were given greater than 7 days of therapy, 0% to 20% of children had concomitant septic arthritis [27, 31, 33, 34, 36].

Discussion

The epidemiology of childhood AHO has changed since routine childhood immunization against Haemophilus influenzae type b was introduced in the early 1990s [39]. Currently, the most common causative organism of childhood AHO is Staphylococcus aureus. For AHO therapy to be successful, levels of antimicrobial agents must be maintained sufficiently high over time to eliminate the bacteria from the site of infection. Pharmacologic evidence for adequate concentrations of oral antimicrobial agents in affected tissues supports the use of oral agents within a management scheme of 'step-down therapy.' [34, 36] The benefits of shorter courses of parenteral antimicrobial therapy before switching to oral therapy include decreased costs and morbidity. There still exists, however, a dilemma with respect to the optimal duration of parenteral therapy.

Our systematic review of cohort studies using a minimum follow up of 6 months found a pooled cure rate of 95.2% (95% CI = 90.4 – 97.7) with 7 days or less of parenteral therapy. Other cohorts that had short follow-up (therefore not included in our review) reported treating children with less than 7 days of parenteral antimicrobial reported cure rates of greater than 90%; [40, 41]. In one other cohort (not suitable for inclusion in our analysis due to unextractable data, heterogeneous group and a follow up period of 4 months), a 95% cure rate was observed with 14 days of parenteral antimicrobial therapy [42]. Many other prospective studies could not be included in the systematic review for a variety of reasons: lack of standardized definitions, lack of retrievable treatment information or short follow-up periods [2, 19, 4049].

The small sample size used (mean of 24 patients; range 5 to 50 patients) is of concern although we gained statistical strength by pooling across studies. Thus, individual studies have wide confidence intervals, which are narrowed using the systematic review approach, providing a more precise estimate of the "true" cure rates (Figure 1). The range of duration of oral antimicrobial agents was also wide, implying that there may have been other clinical factors that were implicit in the decision of total length of therapy. Other clinical parameters, such as the extent of bone involvement, suspicion of septic arthritis and the course of the illness before treatment, may also have influenced treatment duration, but were not reported. Although the studies were prospective cohorts with respect to length of therapy they may be inherently biased in their selection criteria.

We did not assess the quality of reports of the included studies. Quality assessment is an important part of a systematic review, particularly if a validated approach is used [50]. We are unaware of any published assessment measure for cohort studies and elected to forgo the pitfalls of developing one ourselves [51].

Clinical heterogeneity in the data from older studies can be partly attributed to the multiple pathogens that were responsible for the clinical syndrome. Only one study was published after routine childhood immunization for Haemophilus influenzae type b was introduced in the early 90's [35]. We included children who had had disease due to Staphylococcus aureus as well as those who were culture negative because in many cases this reflects the reality of clinical practice. Studies that deal only with staphylococcal disease or that were published after 1990 from areas where there is universal immunization against Haemophilus influenzae type b are most likely to best represent the child who currently presents with AHO due to methicillin sensitive Staphylococcus aureus (MSSA).

Our review had several limitations. We narrowed our focus to cohort studies. Results from randomized controlled trials may provide more valid results and we are aware of the existence of at least one such study [38]. The cure rate of 91.6% in children who received short course parenteral therapy however supports the findings of this systematic review. This report however only included 12 children in that group. Combining this study with the cohort studies might introduce bias into the estimates of cure rates.

Our results indicate that cure rates are similar regardless of whether children with AHO are treated for a shorter or longer time period. There are several potential practical advantages of the shorter course of therapy; shorter hospital stay; decreased morbidity from intravenous lines and more cost effective. We believe that the results from this systematic review warrant serious consideration be given to conducting a randomized controlled trial. Such a study could be developed to demonstrate equivalence between two durations of antibiotic therapy: a shorter course (i.e., 3–5 days) compared to a more "standard" course of 14 to 21 days. This would only be relevant if cure rates were not equivalent. The results from such a study could be used to better inform clinicians as to the management of children with AHO in the future.

Declarations

Acknowledgements

We would like to thank Dr. Barbara Law and for helpful comments on an earlier draft of this manuscript.

Authors’ Affiliations

(1)
Department of Pediatrics, University of Ottawa
(2)
Division of Infectious Diseases, Children's' Hospital of Eastern
(3)
Division of Orthopedics, Hospital for Sick Children
(4)
Chalmers Research Group, Children's Hospital of Eastern Ontario Research Institute
(5)
School of Mathematics and Statistics, Carleton University

References

  1. Krogstad P, Smith AL: Steomyelitis and septic arthritis. In Textbook of pediatric infectious diseases. Edited by: Feigin R, Cherry J. 1998, Philadelphia: W.B. Saunders Company, 683-698.Google Scholar
  2. Unkila Kallio L, Kallio MJT, Peltola H: Acute hematogenous osteomyelitis in children in Finland. Ann Med. 1993, 25: 545-549.PubMedGoogle Scholar
  3. Nade S: Acute hematogenous Osteomyelitis in Infancy and Childhood. J Bone Joint Surg Br. 1983, 65B: 109-119.Google Scholar
  4. Nelson J: Osteomyelitis and Suppurative Arthritis. In Nelson Textbook of Pediatrics. Edited by: Behrman R.E., Kliegman R.M., Jenson H.B. 2000, Philadelphia: W.B. Saunders Company, 776-780.Google Scholar
  5. Gutierrez KM: Osteomyelitis. In Principles and Practice of Pediatric Infectious Diseases. Edited by: Long SS, Pickering L.K., Prober C.G. 1997, New York: Churchill Livingston Inc.;, 528-537.Google Scholar
  6. Morrissy RT: Bone and joint sepsis. In Lovell and Winter's Pediatric Orthopedics. Edited by: Morrissy R, Weinstein SL. 2001, Philadelphia: Lippincott Williams & Wilkins;, 459-503.Google Scholar
  7. Dich VQ, Nelson JD, Haltalin KC: Osteomyelitis in infants and children: a review of 163 cases. Am J Dis Child. 1975, 129: 1273-1278.View ArticlePubMedGoogle Scholar
  8. Blockey NJ, Watson JT: Acute osteomyelitis in children. J Bone Joint Surg Br. 1970, 52B: 77-87.Google Scholar
  9. Jacobs RF, Augustine RA, Aronson J, McCarthy RE, Steele RW, Yamauchi T: Timentin therapy for bone, joint, and deep soft tissue infections in children. Am J Med. 1985, 79: 188-191. 10.1016/0002-9343(85)90158-5.View ArticlePubMedGoogle Scholar
  10. Meller I, Manor Y, Bar-Ziv J, Torok G: Acute hematogenous osteomyelitis in children: long-term results of surgical treatment. Orthop Rev. 1989, 18: 824-831.PubMedGoogle Scholar
  11. Mollan R, Piggot J: Acute osteomyelitis in children. J Bone Joint Surg Br. 1977, 9B: 2-7.Google Scholar
  12. Bamberger T, Gugler E: [Acute osteomyelitis in childhood. A follow-up of predominantly conservatively treated children]. [German]. Schweiz Med Wochenschr. 1983, 113: 1219-1228.PubMedGoogle Scholar
  13. Rud B, Halken S, Damholt V: Hematogenous osteomyelitis in children. Acto Orthop Scand. 1986, 57: 440-443.View ArticleGoogle Scholar
  14. Syrogiannopoulos GA, Nelson JD: Duration of antimicrobial therapy for acute suppurative osteoarticular infections. Lancet. 1988, 37-40. 10.1016/S0140-6736(88)91013-6.Google Scholar
  15. LaMont RL, Anderson PA, Dajani AS, Thirumoorthi MC: Acute hematogenous osteomyelitis in children. J Pediatr Orthop. 1987, 7: 579-583.View ArticlePubMedGoogle Scholar
  16. Kandel SN, Mankin HJ: Pyogenic abscess of the long bones in children. Clin Orthop. 1973, 96: 108-117.View ArticlePubMedGoogle Scholar
  17. Karwowska A, Davies HD, Jadavji T: Epidemiology and outcome of osteomyelitis in the era of sequential intravenous-oral therapy. Pediatr Infect Dis J. 1998, 17: 1021-1026. 10.1097/00006454-199811000-00012.View ArticlePubMedGoogle Scholar
  18. Petersen S, Knudsen FU, Anderson EA, Egebald M: Acute haematogenous osteomyelitis and septic arthritis. Acto Orthop Scand. 1980, 51: 451-457.View ArticleGoogle Scholar
  19. Dones P, Scarlata F, Di Gangi M: Effectiveness of teicoplanin as a monotherapy in the treatment of coagulase-positive Staphylococcus aureus in osteomyelitis. Mediterranean J of Infect & Parasitic Dis. 1994, 9: 99-100.Google Scholar
  20. Arango JL, Trujillo H, Worren D, Uribe A, Agudelo NH, de Vidal EL: Effectiveness of two new cephalosporins, cephazolin and cephapirin, administered intermittently in acute and chronic osteomyelitis in children. J Int Med Res. 1976, 4: 183-194.View ArticlePubMedGoogle Scholar
  21. Sadat-Ali M: Manage of acute osteomyelitis in children–should it be conservative?. Indian J Med Sci. 1992, 46: 297-300.PubMedGoogle Scholar
  22. Highland TR, Lamont RL: Osteomyelitis of the pelvis in children. J Bone Joint Surg Am. 1983, 65-A: 230-234.Google Scholar
  23. Geissler WB, Purvis JM: Hematogenous osteomyelitis and septic arthritis in children: a ten year review. J Miss State Med Assoc. 1989, 30: 71-74.PubMedGoogle Scholar
  24. Green JH: Cloxacillin in treatment of acute osteomyelitis. BMJ. 1967, 2: 414-416.View ArticlePubMedPubMed CentralGoogle Scholar
  25. Lane-O'Kelly A, Moloney AC: Acute haematogenous osteomyelitis – evaluation of management in the 1990s. Ir J Med Sci. 1995, 164: 285-288.View ArticlePubMedGoogle Scholar
  26. Newcombe RG: Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998, 17: 857-872. 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E.View ArticlePubMedGoogle Scholar
  27. Bryson YJ, Connor JD, LeClerc M, Giammona ST: High-dose oral dicloxacillin treatment of acute staphylococcal osteomyelitis in children. J Pediatr. 1979, 94: 673-675.View ArticlePubMedGoogle Scholar
  28. Cole WG, Dalziel RE, Leitl S: Treatment of acute osteomyelitis in childhood. J Bone Joint Surg Br. 1982, 64: 218-223.PubMedGoogle Scholar
  29. Feigin RD, Pickering LK, Anderson D, Keeney RE, Shackleford PG: Clindamycin treatment of osteomyelitis and septic arthritis in children. Pediatrics. 1975, 55: 213-223.PubMedGoogle Scholar
  30. Freij BJ, Kusmiesz H, Shelton S, Nelson JD: Imipenem and cilastatin in acute osteomyelitis and suppurative arthritis. Am J Dis Child. 1987, 141: 335-342.View ArticlePubMedGoogle Scholar
  31. Kolyvas E, Ahronheim G, Marks MI: Oral antibiotic therapy of skeletal infections in children. Pediatrics. 1980, 65: 867-871.PubMedGoogle Scholar
  32. Refass A, Harouchi A, Fehri M, El Andaloussi M, Bellamine A, Merini MF: The treatment of acute osteomyelitis in children by monoantibiotic therapy with flucloxacillin. Medecine et Maladies Infectieuses. 1989, 19: 96-100.View ArticleGoogle Scholar
  33. Rodriguez W, Ross S, Khan W, McKay D, Moskowitz P: Clindamycin in the treatment of osteomyelitis in children. Am J Dis Child. 2000, 131: 1088-1093.View ArticleGoogle Scholar
  34. Tetzlaff TR, McCracken GH, Nelson JD: Oral antibiotic therapy for skeletal infections in children. J Pediatr. 1978, 92: 485-490.View ArticlePubMedGoogle Scholar
  35. Peltola H, Unkila Kallio L, Kallio MT, Aalto K, Anttolainen I, Fagerholm R, et al: Simplified treatment of acute staphylococcal osteomyelitis of childhood. Pediatrics. 1997, 99: 846-850.View ArticlePubMedGoogle Scholar
  36. Prober CG, Yeager AS: Use of the serum bactericidal titer to assess the adequacy of oral antibiotic therapy in the treatment of acute hematogenous osteomyelitis. J Pediatr. 1979, 95: 131-135.View ArticlePubMedGoogle Scholar
  37. Geddes AM, Dwyer NStJ, Ball AP, Amos RS: Clindamycin in bone and joint infections. J Antimicrob Chemother. 1977, 3: 501-507.View ArticlePubMedGoogle Scholar
  38. Kaplan SL, Mason EOJ, Feigin RD: Clindamycin versus nafcillin or methicillin in the treatment of Staphylococcus aureus osteomyelitis in children. South Med J. 1982, 75: 138-142.View ArticlePubMedGoogle Scholar
  39. Howard AW, Viskontas D, Sabbagh C: Reduction in osteomyelitis and septic arthritis related to Haemophilus influenzae type B vaccination. J Pediatr Orthop. 1999, 19: 705-709. 10.1097/00004694-199911000-00003.PubMedGoogle Scholar
  40. Nelson JD, Bucholz RW, Kunmiesz H, Shelton S: Benefits and risks of sequential parenteral-oral cephalosporin therapy for suppurative bone and joint infections. J Pediatr Orthop. 1982, 2: 255-262.View ArticlePubMedGoogle Scholar
  41. Walker SH: Staphylococcal osteomyelitis in children: success with cephaloridine-cephalexin therapy. Clin Pediatr (Phila). 1973, 12: 98-100.View ArticleGoogle Scholar
  42. Nussinovitch M, Shalit I, Einhorn M, Keren G, Rachmel A, Asia A, et al: Amoxicillin-clavulanate versus standard antibiotic therapy for the treatment of septic arthritis and osteomyelitis. Pediatrics & Related Topics. 1997, 36: 73-82.Google Scholar
  43. Beauvais P, Filipe G, Berniere J, Carlioz H: Oral pristinamycinum therapy for bone and joint infections in children. A report of 50 cases. Arch Fr Pediatr. 1981, 38: 489-493.PubMedGoogle Scholar
  44. Fleming PC, Huda SS, Bobechko WP: Cephaloridine and the penicillins in the treatment of staphylococcal osteomyelitis and arthritis. Postgrad Med J. 1970, 89-93.Google Scholar
  45. Badelon O, Bingen E, Sauzeau C, Lambert-Zechovsky N, de Ribier A, Bensahel H: [Choice of first-line antibiotic therapy in the treatment of bone and joint infections in children]. [French]. Pathol Biol (Paris). 1988, 36: 746-749.Google Scholar
  46. Kulhanjian J, Dunphy MG, Hamstra S, Levernier K, Rankin M, Petru A, et al: Randomized comparative study of ampicillin/sulbactam vs. ceftriaxone for treatment of soft tissue and skeletal infections in children. Pediatr Infect Dis J. 1989, 8: 605-610.View ArticlePubMedGoogle Scholar
  47. Learmonth ID, Dall G, Pollock DJ: Acute osteomyelitis and septic arthritis in children. A simple approach to treatment. South African Medical Journal. 1984, 65: 117-120.PubMedGoogle Scholar
  48. Aronoff SC, Scoles PV, Makley JT, Jacobs MR, Blumer JL, Kalamchi A: Efficacy and safety of sequential treatment with parenteral sulbactam/ampicillin and oral sultamicillin for skeletal infections in children. Rev Infect Dis. 1986, 8: S639-S643.View ArticlePubMedGoogle Scholar
  49. Unkila-Kallio L, Kallio MJ, Eskola J, Peltola H: Serum C-reactive protein, erythrocyte sedimentation rate, and white blood cell count in acute hematogenous osteomyelitis of children. Pediatrics. 1994, 93: 59-62.PubMedGoogle Scholar
  50. Moher D, Cook DJ, Jadad AR, Tugwell P, Moher M, Jones A, et al: Assessing the quality of randomized controlled trials: Implications for the conduct of meta-analyses. Health Technol Assess. 1999, 3: 1-98.Google Scholar
  51. Marshall M, Lockwood A, Bradley C, Adams CE, Joy C, Fenton M: Unpublished rating scales: a major source of bias in randomized controlled trials of treatments for schizophrenia. British Journal of Psychiatry. 2000, 176: 249-252. 10.1192/bjp.176.3.249.View ArticlePubMedGoogle Scholar
  52. Al-Harby S: Acute hematogenous osteomyelitis of childhood in Saudi Arabia. Why does treatment fail?. Saudi Med J. 1997, 18: 148-150.Google Scholar
  53. Babaiantz P: [Acute osteomyelitis in infants and children. Follow-up study of 25 cases]. [French]. Schweiz Rundsch Med Prax. 1975, 64: 706-720.PubMedGoogle Scholar
  54. Dagan R, Phillip M, Watemberg NM, Kassis I: Outpatient treatment of serious community-acquired pediatric infections using once daily intramuscular ceftriaxone. Pediatr Infect Dis J. 1987, 6: 1080-1084.View ArticlePubMedGoogle Scholar
  55. Dirschl DR: Acute pyogenic osteomyelitis in children. Orthop Rev. 1994, 23: 305-312.PubMedGoogle Scholar
  56. Hoffman EB, Knudsen CJ, Paterson MP: Acute osteomyelitis and septic arthritis in children: A spectrum of disease. Pediatr Surg Int. 1990, 5: 382-386.Google Scholar
  57. Jackson MA, Burry VF, Olson LC: Pyogenic arthritis associated with adjacent osteomyelitis: identification of the sequelae-prone child. Pediatr Infect Dis J. 1992, 11: 9-13.View ArticlePubMedGoogle Scholar
  58. Braun HS, Ender A, Friedel B: [Follow-up studies in infantile osteomyelitis]. [German]. Beitr zur Orthop Traumatol. 1984, 31: 305-313.Google Scholar
  59. Aigner RM, Fueger GF, Vejda M: Follow-up of osteomyelitis of infants with systemic serum parameters and bone scintigraphy. Nucl Med (Stuttg). 1996, 35: 116-121.Google Scholar
  60. Anderson JR, Scobie WG, Watt B: The treatment of acute osteomyelitis in children: A 10-year experience. J Antimicrob Chemother. 1981, 7: 43-50.View ArticlePubMedGoogle Scholar
  61. Craigen MAC, Watters J, Hackett JS: The changing epidemiology of osteomyelitis in children. J Bone Joint Surg Br. 1992, 74: 541-545.PubMedGoogle Scholar
  62. Fink CW, Nelson JD: Septic arthritis and osteomyelitis in children. Clin Rheum Dis. 1986, 12: 423-435.PubMedGoogle Scholar
  63. François P, Sarlangue J, Grimprel E, Carrieré JC, Garnier JM, De , et al: Epidemiology and bacteriological diagnosis of osteoarticular infections in children. A multicentric study (I). Medecine et Maladies Infectieuses. 1992, 22: 758-762.Google Scholar
  64. Gillespie WJ, Mayo KM: The management of acute haematogenous osteomyelitis in the antibiotic era. A study of the outcome. J Bone Joint Surg Br. 1981, 63: 126-131.PubMedGoogle Scholar
  65. Roine I, Arguedas A, Faingezicht I, Rodriguez F: Early detection of sequela-prone osteomyelitis in children with use of simple clinical and laboratory criteria. Clin Infect Dis. 1997, 24: 849-853.View ArticlePubMedGoogle Scholar
  66. Scott RJ, Christofersen MR, Robertson WW, Davidson RS, Rankin L, Drummond DS: Acute osteomyelitis in children: a review of 116 cases. J Pediatr Orthop. 1990, 10: 649-652.View ArticlePubMedGoogle Scholar
  67. Van Brederode NE, Ponsen RG: Acute haematogenic osteomyelitis. Ned Tijdschr Geneeskd. 1980, 124: 453-455.PubMedGoogle Scholar
  68. Vaughan PA, Newman NM, Rosman MA: Acute hematogenous osteomyelitis in children. J Pediatr Orthop. 1987, 7: 652-655.View ArticlePubMedGoogle Scholar
  69. Anderson JR, Orr JD, Maclean DA, Scobie WG: Acute haematogenous osteitis. Archives of Disease in Childhood. 1980, 55: 953-957.View ArticlePubMedPubMed CentralGoogle Scholar
  70. Faden H, Grossi M: Acute osteomyelitis in children. Reassessment of etiologic agents and their clinical characteristics. Am J Dis Child. 1991, 145: 65-69.View ArticlePubMedGoogle Scholar
  71. Gillespie WJ: Late recurrence following acute haematogenous osteomyelitis. New Zealand Medical Journal. 1975, 82: 304-305.PubMedGoogle Scholar
  72. Trujillo H, Alvarez RM, Rodriguez AB, Roldán RF, Warren DS, Gil HL, et al: La rifampicina y las penicinas en el tratamiento de las osteomielitis hematogenas de los niño. Antioquia Medica. 1974, 24: 443-452.Google Scholar
  73. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2334/2/16/prepub

Copyright

© Le Saux et al; licensee BioMed Central Ltd. 2002

This article is published under license to BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.

Advertisement