Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Drug resistance in HIV patients with virological failure or slow virological response to antiretroviral therapy in Ethiopia

  • Alemseged Abdissa1, 2Email author,
  • Daniel Yilma3,
  • Jannik Fonager4,
  • Anne M Audelin4,
  • Lone H Christensen4,
  • Mette F Olsen5,
  • Markos Tesfaye6,
  • Pernille Kaestel5,
  • Tsinuel Girma7,
  • Abraham Aseffa8,
  • Henrik Friis5,
  • Court Pedersen2 and
  • Aase B Andersen2
BMC Infectious Diseases201414:181

DOI: 10.1186/1471-2334-14-181

Received: 3 January 2014

Accepted: 31 March 2014

Published: 4 April 2014

Abstract

Background

The ongoing scale-up of antiretroviral therapy (ART) in sub-Saharan Africa has prompted the interest in surveillance of transmitted and acquired HIV drug resistance. Resistance data on virological failure and mutations in HIV infected populations initiating treatment in sub-Saharan Africa is sparse.

Methods

HIV viral load (VL) and resistance mutations pre-ART and after 6 months were determined in a prospective cohort study of ART-naïve HIV patients initiating first-line therapy in Jimma, Ethiopia. VL measurements were done at baseline and after 3 and 6 months. Genotypic HIV drug resistance (HIVDR) was performed on patients exhibiting virological failure (>1000 copies/mL at 6 months) or slow virological response (>5000 copies/mL at 3 months and <1000 copies/mL at 6 months).

Results

Two hundred sixty five patients had VL data available at baseline and at 6 months. Virological failure was observed among 14 (5.3%) participants out of 265 patients. Twelve samples were genotyped and six had HIV drug resistance (HIVDR) mutations at baseline. Among virological failures, 9/11 (81.8%) harbored one or more HIVDR mutations at 6 months. The most frequent mutations were K103N and M184VI.

Conclusions

Our data confirm that the currently recommended first-line ART regimen is efficient in the vast majority of individuals initiating therapy in Jimma, Ethiopia eight years after the introduction of ART. However, the documented occurrence of transmitted resistance and accumulation of acquired HIVDR mutations among failing patients justify increased vigilance by improving the availability and systematic use of VL testing to monitor ART response, and underlines the need for rapid, inexpensive tests to identify the most common drug resistance mutations.

Background

In Ethiopia approximately 1.3 million people live with HIV and the estimated adult HIV prevalence is 1.5% [1]. During the past eight years, there has been a rapid scale-up of antiretroviral therapy (ART) which reached 250,000 adults in 2012, representing 86% of eligible patients [2, 3].

As ART roll-out continues in resource-limited settings, the risk of potential emergence of HIV drug resistance (HIVDR) is growing. This could be due to the absence of virological monitoring in routine clinical care and the use of drugs with low genetic barriers such as non-nucleoside reverse transcriptase inhibitors [NNRTI] [4]. The use of nevirapine as monotherapy for preventing mother-to-child transmission may have further contributed to the problem [5].

Viral replication under suboptimal antiretroviral pressure leads to accumulation of resistance mutations, which limit future therapeutic choices [6] as mutations conferring resistance to one drug frequently confer cross resistance to other antiretroviral drugs within the same class [7]. Thus, it is essential for patient management to define the pattern of both primary and secondary resistance mutations.

The World Health Organization (WHO) recommends surveillance for transmitted HIVDR among antiretroviral-naïve patients and drug resistance mutations emerging during treatment in all countries involved in the ARV access programs [8, 9]. Although transmitted and acquired HIV-1 drug resistance mutations have been well-described and longitudinally surveyed in high-income countries such as France [10], United States [11] and Denmark [12] there are few data on the subject in resource-limited settings.

The aim of our study was to assess the prevalence of virological failure and resistance mutations in patients initiating treatment in Ethiopia.

Methods

Study setting

The present study was part of a randomized controlled trial evaluating two nutritional supplements in adult patients initiating ART in Ethiopia, which was registered at http://www.controlled-trials.com (ISRCTN32453477). There were no differences in virological suppression among intervention groups (Olsen MF et al., submitted). The Ethiopian ART program was initiated in 2005 free of charge in hospitals and followed by the expansion to health centers in the periphery in 2007. Patients initiating ART at Jimma University Hospital, Jimma Health Center and Agaro Health Center were enrolled between July 2010 and August 2012. The first two centers are located in Jimma (a city of 150,000 inhabitants), with an urban site managing a total of approximately 1,617 patients on ART in Jimma University Hospital and 317 in Jimma Health center. The third centre is located in Agaro (a small town of 28,000 inhabitants) with approximately 240 patients on treatment.

Study participants

HIV-positive patients attending the ART clinics, who were ART naïve and eligible for ART according to the Ethiopian national guideline [13], were invited to participate in the study and followed for 6 months. Inclusion criteria were being adult (≥18 years), living within approximately 50 km of Jimma, and consenting to participate. Pregnant or lactating women and patients with known previous use of ART were excluded. Participants gave informed consent and protocols were approved by Jimma University Ethics Review Board and National Research Ethics Committee of Ethiopia.

Decision to initiate treatment was made according to WHO criteria: stage IV irrespective of CD4 count, stage III if CD4 < 350, or CD4 < 200 cells/μl at any stage. The choice of ART combination was guided by national treatment guideline [13] and generally consisted of one of three first line regimens [Tenofovir (TDF) + Lamivudine (3TC) + Nevirapine (NVP)/Efavirenz (EFV); or Zidovudine (AZT) + 3TC + NVP/EFV; or Stavudine (d4T) + 3TC + NVP/EFV]. As part of the ART program, patients collected drugs every month for free. CD4 counts were monitored at ART initiation and every 6 months. Viral load monitoring was performed as part of this study.

Specimen collection and processing

Whole blood was obtained for CD4 count and plasma samples were separated and stored at −80°C until analyzed for HIV viral load and genotype. CD4 count and viral loads were measured at baseline and after 3 and 6 months on therapy. Genotypic HIVDR was done at baseline and after 6 months among selected participants based on viral load levels.

Viral load and CD4 count

HIV-1 viral load (VL) was quantified using a commercial PCR assay (RealTime HIV-1, Abbott Laboratories, Illinois, USA) and automated extraction system (m2000 Real Time System, Abbott Laboratories, Illinois, USA) was used. Extracted samples were amplified and detected on the m2000rt platform (Abbott Laboratories, Illinois, USA). Virological failure was defined as a confirmed VL >1000 copies/mL at 6 months and viral suppression is the success of attaining VL <1000 copies/mL at 6 months. Virological slow responders were defined as VL ≥5000 copies/mL at 3 months but with viral suppression at 6 months. CD4 cells were enumerated using the Facscount® automated cell counter (Becton-Dickinson, Franklin Lakes, New Jersey, USA). Immunological failure was defined as a decline in CD4 count from baseline after 6 months of ART [14].

Adherence to the ART

Self-reported adherence to ART was documented monthly. In addition, efavirenz or nevirapine plasma concentrations were measured at 1 and 2 months using liquid chromatography-tandem mass spectrometry at Division of Clinical Pharmacology, university of Cape Town, South Africa. Limit of quantification was 0.01 μg/ml for both drugs.

Resistance genotyping

Plasma samples were shipped to Copenhagen, Denmark on dry ice for drug resistance mutation analysis at Statens Serum Institut (SSI, Copenhagen DK). Amplification of the pol gene was performed in two steps using SuperScript™ III One-Step RT-PCR System with Platinum® Taq High Fidelity (Invitrogen) in accordance with manufacturer´s instructions. First cDNA synthesis and first PCR was performed using the primers JA203 [15] and IN3 [16] at the following conditions: 52°C 30 min, 94°C, 2 min followed by 40 cycles of: 94°C, 15 sec; 60°C, 45 sec; 66°C, 3 min and a final extension at: 66°C for 10 min. The second nested-PCR was performed using the Expand High Fidelity PCR System (Roche) in accordance with manufacturer´s instructions and with the primers JA204 [15] and ABI1_R [17] at the following conditions: 94°C, 2 min followed by 35 cycles of: 94°C, 30 sec; 60°C, 30 sec; 72°C, 60 sec, and a final extension at: 72°C for 7 min, yielding a PCR fragment of 1449 bp. PCR products were prepared for sequencing using IllustraTM ExoProStar 1 step (GE Healthcare) and sequencing reactions were carried out using the BigDye Terminator version 1.1 (Applied Biosystems) and the sequencing primers:

INH-A:CTTCAGAGCAGACCAGAGCCAA,

INH-B:GTTAAACAATGGCCATTGACAGA,

INH-D:CAGRCYGGAGCCAACAGC,INH-C:GATGGAAAGGATCACCRGCAATA, INH-F:TTGGGCCATCCATTCCTGG,

INH-G:CCATCCCTGTGGAAGCACAT

INH-H:TTCTGTATTTCTGCTAYTAAGTCTTTTG.

Sequencing was performed on an ABI 377 DNA Sequencer (Applied Biosystems) and sequence assembly and analysis was performed in BioNumerics v. 6.6 (Applied Maths, Sint-Martens-Latem, Belgium). For six of the 29 analyzed samples (Id #_month; 25_6, 146_6, 301_6, 314_6, 360_6 and 25_0), sequences were obtained using the ViroSeq HIV-1 genotyping System v. 2 (Abbott Diagnostics, Foster City, CA) in accordance with manufacturer´s instructions.

Drug resistance mutation analysis and statistical methods

For each sequence, the resistance profile was calculated using the current HIVdb algorithm [18] at Stanford’s HIV genotypic resistance profile (http://sierra2.stanford.edu/sierra/servlet/JSierra?action=sequenceInput) and as implemented in BioNumerics v. 6.6.

Statistical analysis was done using STATA/IC version 11.2 (StataCorp LP, College Station, USA). Differences in means, medians and proportions between men and women were tested using Pearson Chi-square test and the Fisher’s exact test. P-values <0.05 were considered significant.

Sequences submitted to GenBank

Sequences obtained in this study were submitted to GenBank under the following accession numbers: KJ561122-KJ561136 (baseline samples) and KJ561137-KJ561150 (6 months samples).

Results

Participants and their baseline characteristics

A total of 312 adult patients on first-line ART were enrolled into the study. Of these, 281 and 273 had reached 3 and 6 months of follow up, respectively, while the rest dropped out for various reasons including withdrawal of consent, lost to follow up or death. A total of 275 participants had VL results available at 3 months and 265 at 6 months. At ART initiation, the 265 participants retained for 6 months of follow-up did not differ significantly from the rest of participants (n =47), in terms of baseline characteristics such as age, BMI, VL and WHO stage. The mean (±SD) age was 33.0 (±8.8) years and 67% were women (Table 1). A combination of tenofovir (TDF), lamuvidine (3TC) and efavirenz (EFV) or nevirapine (NVP) was the most commonly (82.6%) prescribed first-line regimen. The other first-line regimens contained zidovudine (AZT; 14.3%) or stavudine (d4T; 3%) instead of TDF.
Table 1

Baseline characteristics of HIV-1 positive participants treated with first-line ART regiments in Jimma, Ethiopia (n =312)

 

Women (n =179)

Men (n =86)

Total (n = 265)

Excluded, did not complete 6 months (n =47)

Age, y

31.0 ±8.0

38.0 ±9.0

33.0 ±8.8

32.2

Body mass index (BMI), kg/m2

19.6 ±2.5

19.1 ±1.8

19.4 ±2.3

19.5 ±2.5

CD4 count at enrollment, cells/ul

189 ±113

194 ±113

190.7 ±113

181 ±105

Viral load, log(copies/mL )

4.7 ±1.0

4.6 ±0.9

4.7 ±1.0

4.8 ±0.9

WHO stage

    

Stage I

63 (35.2)

23 (26.7)

86 (32.5)

11 (23.4)

Stage II

47 (26.3)

32 (37.2)

79 (29.8)

12 (25.5)

Stage III

53 (29.6)

26 (30.2)

79 (29.8)

19 (40.4)

Stage IV

16 (8.9)

5 (5.8 )

21 (7.9)

5 (10.6)

ART regimen

    

TDF/3TC/EFV

113 (63.1)

77 (89.5)

190 (71.7)

33 (70.2)

AZT/3TC/EFV

2 (1.1)

1 (1.2)

3 (1.1)

1 (2.1)

TDF/3TC/NVP

27 (15.1)

2 (2.3)

29 (10.9)

3 (5.7)

AZT/3TC/NVP

31 (17.3)

4 (4.7)

35 (13.2)

10 (18.9)

Other*

6 (3.4)

2 (2.3)

8 (3.0)

0 (0.0)

*Other regimen includes mainly D4T and NVP based treatment. Data are mean ±SD or n (%).

Virological outcomes and immunological criteria

Virological failure was observed in 14 (5.3%) of the participants. Three of the participants with good viral suppression at 6 months had a slow response. These participants (Id # 146, 301 and 314) had 184878, 6849 and 125562 copies/mL at 3 months, respectively (Table 2). It was found that 158/275 (57.5%) and 233/265 (87.9%) of the participants achieved VL <40 copies/mL at 3 and 6 months respectively. Patients experiencing virological failure had significantly lower CD4 count at 6 months mean (±SD) =169 (±85) compared to those with successful viral suppression 313 (±131); P = 0.002). However, only four of the 14 participants with virological failure (28.6%) experienced immunological failure at 6 month (Table 2) and, 22 of 251 (8.7%) participants with virological suppression experienced immunological failure.
Table 2

Characteristics of participants with virological failure and slow virological responders

   

Viral load (copies/mL)

CD4 (cells/μl)

    

Patient Id

Age

Sex

At 3 months

At 6 months

At baseline

At 6 months

Decline in CD4 count

NNRTI conc, μg/ml at 1 month

NNRTI conc, μg/ml at 2 months

>95% reported adherence

Virological failures

         

9

40

M

16816

7703

124

235

No

2.16

2.27

Yes

25

39

M

54

116373

114

163

No

4.6

4.64

Yes

157

47

M

91377

51498

41

153

No

2.9

Missing

Yes

164

22

F

<40

11420

127

178

No

3.88

1.39

Yes

213

35

F

767340

29427

114

251

No

<0.01

<0.01

Yes

243

26

F

<40

163259

207

116

Yes

8.7

8.04

Yes

269

30

F

86463

66498

207

331

No

<0.01

0.01

Yes

300

50

F

Undetectable

28038

119

199

No

Missing

2.48

Yes

339

30

F

42735

381889

19

81

No

10.9

10.1

Yes

346

25

F

Missing

2002

225

357

No

5.34

Missing

Yes

354

40

M

12237

30252

137

122

Yes

2.32

2.94

Yes

357

30

F

24931

143175

221

240

No

<0.01

<0.01

Yes

360

32

F

7289

111647

287

192

Yes

18.6

Missing

Yes

373

34

F

344294

78504

48

5

Yes

<0.01

<0.01

Yes

Slow virological responders

146

20

F

184878

141

131

360

No

4.42

6.54

Yes

301

30

F

6849

640

79

214

No

4.33

Missing

No

314

50

F

125562

379

72

72

No

Missing

<0.01

No

HIVDR mutations at baseline

HIVDR genotyping was performed in pre-ART plasma specimens from 12 participants with virological failure. All patients were infected with HIV subtype C. Resistances to NNRTIs were identified in six of 12 (50%) and none were resistant to NRTI. Mutations detected in three of the patients are associated with high level resistance. Five participants with HIVDR mutations at ART initiation received ART regimens that were only partially active (Additional file 1: Table S1). During the 6 months of follow-up, none of these patients were switched to a fully active first-line or second-line regimen.

A total of seven patients had HIVDR mutations detectable in the baseline samples; one mutation (V90IV) confers no resistance (Id # 339). The K103N/X was the most common mutation observed. However, one participant (Id # 25) had a mutation (A98G) that confers resistance to nevirapine. This patient was treated with a supposedly active efavirenz based regimen and the mutation had disappeared at 6 months (Additional file 1: Table S1).

HIVDR mutations at 6 months

HIVDR genotyping was performed in plasma from 11 participants with virological failure at 6 months. Nine of them (81.8%) harboured mutations that cause high level resistance to NNRTIs. Six participants had the mutations at baseline, and three (Id # 9, 339 and 346) acquired additional mutations during follow-up causing resistance to NRTI. Three of the participants with HIVDR had no resistance at baseline but acquired resistance mutations during the course of treatment and two of them became resistant to both NNRTIs and NRTIs. HIVDR genotyping could not be performed for 3 participants (Id # 164, 354 and 373) due to failed sequencing attempt or sample inadequacy (Additional file 1: Table S1).

Of the three slow responders, one (Id # 301) was resistant to all three drugs prescribed, while we found no evidence of HIVDR in the other two participants at 6 months (Id # 146 and 314) (Additional file 1: Table S1). The former had pre-existing mutation and acquired additional mutations developing high level resistance to all the three antiretroviral drugs during the course of treatment (Additional file 1: Table S1).

All cases of HIVDR involved at least one NNRTI mutation, with the K103N (3/9) being the most frequently observed. Combined NNRTI and NRTI mutations were seen in four of nine (44.4%) participants and involved M184V/I in all cases and K65R and D67G occurred in one participant in addition to the M184I mutation. A K65R mutation was also detected in a slow responding patient. While five of 11 participants with virological failure received ART regimens that were not or only partially active, the other four became resistant during the therapy in spite of a fully active ART regimens initiated at baseline (Additional file 1: Table S1).

A total of four participants, two from the virologicaly failing group and another two from the slow responders had no HIVDR mutations at 6 months. Self reported adherence data indicated that all participants with genotype data had good treatment adherence except two of the slow responders (Id # 301 and 314). Measurements of NNRTIs plasma concentrations indicated two out of nine participants with resistance mutations at 6 months (Id # 213 and 269) and one participant with no resistance mutation (Id # 357) had a drug concentration below the limit of quantification at 1 and 2 months (Table 2).

Discussion

This report describes virological failure or slow virological response and associated HIVDR mutations in a cohort of HIV patients initiating first-line regimen in the Ethiopian national ART roll out program. The study revealed a virological failure rate of 5.3% and transmitted resistance among 6/12 of the virological failures in this cohort. Resistance mutations were detected in 9/11 (81.8%) of the patients failing treatment at 6 months. Although the virological failure rate was low, the transmitted resistance documented in this study, in a setting where ART has only been available for eight years is alarming.

A strength of this study is that patients were closely followed in a clinical trial unit for regular clinical and laboratory monitoring at 3 and 6 months, leading to reliable identification of virological failure and minimizing losses-to-follow-up. The potential limitation is that the patients participated in a nutritional intervention study in which they were motivated to come to the ART clinic and perhaps had better ART adherence, compared to patients accessing treatment in a regular setting. The drug resistance mutation analysis was done only on virological failures because of limited resource. Thus, the actual rate of transmitted drug resistance was not estimated.

Comparison of virological failure and HIVDR mutation rates obtained from different studies must be interpreted with caution, since threshold and duration of ART at time of failure varies. In a review from Sub-Saharan Africa countries (in which Ethiopia was not included), it was reported that virological success (defined by a VL < 400 copies/mL) rates after 6 months of ART was 78% [19]. In fact, 67% of the patients obtained viral suppression when applying lower cut-off values for success (VL less than 40 or 50 copies/mL). In this study, VL <40 copies/mL at 6 months was achieved in 87.9% of participants. Thus, compared with data from other Sub-Saharan African countries, the success rates found in the present study was higher using the same threshold.

The patterns of HIVDR mutations among the patients failing treatment in the present study differed from those described in previous two studies conducted in Ethiopia. In a study conducted in Gondar, only two mutations (V75I and G190A) were detected among 92 ART-naïve patients in 2003, before ART roll out [20]. Another investigation in Addis Ababa did not find any mutations among 39 women attending antenatal care units in 2005 [21]. In our study however, several mutations, which may cause moderate to high level of resistance to the NNRTIs and NRTIs were detected, indicating a changing pattern and a rise in transmitted resistance to antiretroviral drugs in Ethiopia.

Although derived from a small study, it is noticeable that 9/11 (81.8%) study participants genotyped at treatment failure had acquired or transmitted HIVDR, which is higher than the 63.7% reported from a study of 2000 HIV positive patients initiating first line ART using the WHO approach in other east African countries between 2006 and 2010 [22]. In three of nine participants with HIVDR mutations at baseline, exposure to a failing regimen during 6 months was associated with the emergence of additional mutations under drug pressure, including M184V/I. Among participants failing therapy and genotyped, two did not show any evidence of HIVDR mutations. Both participants reported very good adherence. However, efavirenz plasma concentrations in one of the participants were below limit of quantification at both 1 and 2 months visits. Although, reduced absorption could not be ruled out, the virological failure in this participant is likely due to undisclosed poor adherence [23].

Overall, the NRTI and NNRTI transmitted and acquired mutation patterns that were identified were consistent with previous reports in similar settings [19, 24, 25]. The most frequent NRTI mutation (M184V) and NNRTI mutations (K103N) described in this study are known to be common in cases of treatment failure [22]. The presence of transmitted resistance mutations has important implications for clinical management of HIV patients [26, 27]. In addition, an immunological criterion alone has limitations to detect virological failures as shown in this study. These raise concerns about the routine use of the first-line regimens without access to viral load determination in Ethiopia.

Interestingly, one of the three patients exhibiting slow virological response had high level resistance to all the three drugs, although the VL was below 1000 copies/mL at 6 months. This may be due to the K65R mutation that can impair replicative fitness of the virus [28]. However, one of the virological failure also carried K65R; and the difference in virological outcome of these patients could be due to modulation of fitness cost by mutational interactions [29]. It is also interesting to note that many of the failing patients (70%) had VL >5000 copies/mL at 3 months in contrast to those with successful viral suppression, which highlights the potential of this criterion to identify virological failure and HIVDR earlier.

Conclusions

In summary, we report virological success and resistance rates and pattern of HIVDR mutations among Ethiopian patients initiating first-line ART. After eight years of large-scale ART introduction, this survey demonstrated a low rate of virological failure. However, major mutations including K103N and M184V were identified, indicating that access to virological monitoring is of paramount importance to prevent inappropriate drug switches and preserve efficacy of ART in resource constrained countries. Moreover, the findings underscore the need for rapid and inexpensive tests to identify the most common drug resistant mutations.

Abbreviations

ART: 

Antiretroviral therapy

HIVDR: 

HIV drug resistance

NNRTI: 

Non-nucleoside reverse transcriptase inhibitors

NNRTI: 

Nucleoside reverse transcriptase inhibitors

SSI: 

Statens Serum Institut

WHO: 

World Health Organization

VL: 

Viral load.

Declarations

Acknowledgements

We are grateful to the study participants for their voluntary participation. The Danish International Development Agency (DANIDA) financially supported the study (Grant number: 09-026RH). The authors thank Camilla Dalgaard (Virus Surveillance and Research Section, SSI) for technological assistance with laboratory analyses, Claus Nielsen and Thea Kølsen Fischer (Virus Surveillance and Research Section, SSI) for planning and supervision of the laboratory work.

Authors’ Affiliations

(1)
Department of Medical Laboratory Sciences & Pathology, Jimma University
(2)
Department of Infectious Diseases, Odense University Hospital
(3)
Department of Internal Medicine, Jimma University
(4)
Department of Microbiological Diagnostics & Virology, Statens Serum Institut
(5)
Department of Nutrition, Exercise and Sports, University of Copenhagen
(6)
Department of Psychiatry, Jimma University
(7)
Department of Pediatrics and Child Health, Jimma University
(8)
Armauer Hansen Research Institute

References

  1. CSA: Ethiopian Demographic and Health Survey. 2011, Addis Ababa, Ethiopia: Central Statistics Authority of Ethiopia (CSA)Google Scholar
  2. Assefa Y, Jerene D, Lulseged S, Ooms G, Van Damme W: Rapid Scale-Up of Antiretroviral Treatment in Ethiopia: Successes and System-Wide Effects. PLoS Med. 2009, 6: e1000056-10.1371/journal.pmed.1000056.View ArticlePubMedPubMed CentralGoogle Scholar
  3. FMOH: Country Progress Report on HIV/AIDS Response. 2012, Addis Ababa, Ethiopia: Federal Ministry of Health of Ethiopia/National HIV/AIDS Prevention and Control OfficeGoogle Scholar
  4. Cozzi-Lepri A, Paredes Phillips AN, Clotet B, Kjaer J, Von Wyl V, Kronborg G, Castagna A, Bogner JR, Lundgren JD, EuroSIDA in EuroCoord: The rate of accumulation of nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance in patients kept on a virologically failing regimen containing an NNRTI. HIV Med. 2012, 13: 62-72.PubMedGoogle Scholar
  5. Zeh C, Weidle PJ, Nafisa L, Lwamba HM, Okonji J, Anyango E, Bondo P, Masaba R, Fowler MG, Nkengasong JN, Thigpen MC, Thomas T: HIV-1 drug resistance emergence among breastfeeding infants born to HIV-infected mothers during a single-arm trial of triple-antiretroviral prophylaxis for prevention of mother-to-child transmission: a secondary analysis. PLoS Med. 2011, 8: e1000430-10.1371/journal.pmed.1000430.View ArticlePubMedPubMed CentralGoogle Scholar
  6. Pillay D: The emergence and epidemiology of resistance in the nucleoside-experienced HIV-infected population. Antivir Ther. 2001, 6 (Suppl 3): 15-24.PubMedGoogle Scholar
  7. Ghosn J, Chaix M-L, Delaugerre C: HIV-1 resistance to first- and second-generation non-nucleoside reverse transcriptase inhibitors. AIDS Rev. 2009, 11: 165-173.PubMedGoogle Scholar
  8. Bennett DE, Bertagnolio S, Sutherland D, Gilks CF: The World Health Organization’s global strategy for prevention and assessment of HIV drug resistance. Antivir Ther. 2008, 13 (Suppl 2): 1-13.PubMedGoogle Scholar
  9. Jordan MR, Bennett DE, Wainberg MA, Havlir D, Hammer S, Yang C, Morris L, Peeters M, Wensing AM, Parkin N, Nachega JB, Phillips A, De Luca A, Geng E, Calmy A, Raizes E, Sandstrom P, Archibald CP, Perriëns J, McClure CM, Hong SY, McMahon JH, Dedes N, Sutherland D, Bertagnolio S: Update on World Health Organization HIV drug resistance prevention and assessment strategy: 2004–2011. Clin Infect Dis Off Publ Infect Dis Soc Am. 2012, 54 (Suppl 4): S245-S249. 10.1093/cid/cis206.View ArticleGoogle Scholar
  10. Descamps D, Chaix M-L, Montes B, Pakianather S, Charpentier C, Storto A, Barin F, Dos Santos G, Krivine A, Delaugerre C, Izopet J, Marcelin A-G, Maillard A, Morand-Joubert L, Pallier C, Plantier J-C, Tamalet C, Cottalorda J, Desbois D, Calvez V, Brun-Vezinet F, Masquelier B, Costagliola D, ANRS AC11 Resistance Study Group: Increasing prevalence of transmitted drug resistance mutations and non-B subtype circulation in antiretroviral-naive chronically HIV-infected patients from 2001 to 2006/2007 in France. J Antimicrob Chemother. 2010, 65: 2620-2627. 10.1093/jac/dkq380.View ArticlePubMedGoogle Scholar
  11. Readhead AC, Gordon DE, Wang Z, Anderson BJ, Brousseau KS, Kouznetsova MA, Forgione LA, Smith LC, Torian LV: Transmitted antiretroviral drug resistance in New York State, 2006–2008: results from a new surveillance system. PloS One. 2012, 7: e40533-10.1371/journal.pone.0040533.View ArticlePubMedPubMed CentralGoogle Scholar
  12. Audelin AM, Lohse N, Obel N, Gerstoft J, Jørgensen LB: The incidence rate of HIV type-1 drug resistance in patients on antiretroviral therapy: a nationwide population-based Danish cohort study 1999–2005. Antivir Ther. 2009, 14: 995-1000. 10.3851/IMP1412.View ArticlePubMedGoogle Scholar
  13. FMoH: National Guidelines for HIV/AIDS and Nutrition in Ethiopia. 2008, Addis Ababa, Ethiopia: Federal Ministry of Health of Ethiopia (FMoH)Google Scholar
  14. WHO: Antiretroviral therapy for HIV infection in adults and adolescents:Recommendations for a public health approach. 2006, Geneva: World Health Organization, Available from: http://www.who.int/hiv/pub/guidelines/artadultguidelines.pdf Google Scholar
  15. Lindström A, Albert J: A simple and sensitive “in-house” method for determining genotypic drug resistance in HIV-1. J Virol Methods. 2003, 107: 45-51. 10.1016/S0166-0934(02)00188-X.View ArticlePubMedGoogle Scholar
  16. Vandamme AM, Witvrouw M, Pannecouque C, Balzarini J, Van Laethem K, Schmit JC, Desmyter J, De Clercq E: Evaluating Clinical Isolates for Their Phenotypic and Genotypic Resistance Against Anti-HIV Drugs. Methods Mol Med. 2000, 24: 223-258.PubMedGoogle Scholar
  17. Madsen TV, Leitner T, Lohse N, Obel N, Ladefoged K, Gerstoft J, Petersen AB, Nielsen C, Jørgensen LB: Introduction of HIV type 1 into an isolated population: molecular epidemiologic study from Greenland. AIDS Res Hum Retroviruses. 2007, 23: 675-681. 10.1089/aid.2007.0235.View ArticlePubMedGoogle Scholar
  18. Liu TF, Shafer RW: Web resources for HIV type 1 genotypic-resistance test interpretation. Clin Infect Dis Off Publ Infect Dis Soc Am. 2006, 42: 1608-1618. 10.1086/503914.View ArticleGoogle Scholar
  19. Barth RE, van der Loeff MFS, Schuurman R, Hoepelman AIM, Wensing AMJ: Virological follow-up of adult patients in antiretroviral treatment programmes in sub-Saharan Africa: a systematic review. Lancet Infect Dis. 2010, 10: 155-166. 10.1016/S1473-3099(09)70328-7.View ArticlePubMedGoogle Scholar
  20. Kassu A, Fujino M, Matsuda M, Nishizawa M, Ota F, Sugiura W: Molecular epidemiology of HIV type 1 in treatment-naive patients in north Ethiopia. AIDS Res Hum Retroviruses. 2007, 23: 564-568. 10.1089/aid.2006.0270.View ArticlePubMedGoogle Scholar
  21. Abegaz WE, Grossman Z, Wolday D, Ram D, Kaplan J, Sibide K, Wuhib T, Ismael S, Nkengasong J, Mekonen T, Berhanu H, Messele T, Lulseged S, Maayan S, Mengistu Y: Threshold survey evaluating transmitted HIV drug resistance among public antenatal clinic clients in Addis Ababa, Ethiopia. Antivir Ther. 2008, 13 (Suppl 2): 89-94.PubMedGoogle Scholar
  22. WHO: WHO HIV Drug Resistance Report 2012 HIV/AIDS Programme. 2012, Geneva: WHOGoogle Scholar
  23. Biressaw S, Abegaz WE, Abebe M, Taye WA, Belay M: Adherence to Antiretroviral Therapy and associated factors among HIV infected children in Ethiopia: unannounced home-based pill count versus caregivers’ report. BMC Pediatr. 2013, 13: 132-10.1186/1471-2431-13-132.View ArticlePubMedPubMed CentralGoogle Scholar
  24. Rusine J, Asiimwe-Kateera B, van de Wijgert J, Boer KR, Mukantwali E, Karita E, Gasengayire A, Jurriaans S, de Jong M, Ondoa P: Low primary and secondary HIV drug-resistance after 12 months of antiretroviral therapy in human immune-deficiency virus type 1 (HIV-1)-infected individuals from Kigali. Rwanda. PloS One. 2013, 8: e64345-10.1371/journal.pone.0064345.View ArticlePubMedGoogle Scholar
  25. Liégeois F, Vella C, Eymard-Duvernay S, Sica J, Makosso L, Mouinga-Ondémé A, Mongo AD, Boué V, Butel C, Peeters M, Gonzalez J-P, Delaporte E, Rouet F: Virological failure rates and HIV-1 drug resistance patterns in patients on first-line antiretroviral treatment in semirural and rural Gabon. J Int AIDS Soc. 2012, 15: 17985-View ArticlePubMedPubMed CentralGoogle Scholar
  26. Hamers RL, Schuurman R, Sigaloff KCE, Wallis CL, Kityo C, Siwale M, Mandaliya K, Ive P, Botes ME, Wellington M, Osibogun A, Wit FW, van Vugt M, Stevens WS, de Wit TFR, PharmAccess African Studies to Evaluate Resistance (PASER) Investigators: Effect of pretreatment HIV-1 drug resistance on immunological, virological, and drug-resistance outcomes of first-line antiretroviral treatment in sub-Saharan Africa: a multicentre cohort study. Lancet Infect Dis. 2012, 12: 307-317. 10.1016/S1473-3099(11)70255-9.View ArticlePubMedGoogle Scholar
  27. Wittkop L, Günthard HF, de Wolf F, Dunn D, Cozzi-Lepri A, de Luca A, Kücherer C, Obel N, von Wyl V, Masquelier B, Stephan C, Torti C, Antinori A, García F, Judd A, Porter K, Thiébaut R, Castro H, van Sighem AI, Colin C, Kjaer J, Lundgren JD, Paredes R, Pozniak A, Clotet B, Phillips A, Pillay D, Chêne G, EuroCoord-CHAIN study group: Effect of transmitted drug resistance on virological and immunological response to initial combination antiretroviral therapy for HIV (EuroCoord-CHAIN joint project): a European multicohort study. Lancet Infect Dis. 2011, 11: 363-371. 10.1016/S1473-3099(11)70032-9.View ArticlePubMedGoogle Scholar
  28. Weber J, Chakraborty B, Weberova J, Miller MD, Quiñones-Mateu ME: Diminished Replicative Fitness of Primary Human Immunodeficiency Virus Type 1 Isolates Harboring the K65R Mutation. J Clin Microbiol. 2005, 43: 1395-1400. 10.1128/JCM.43.3.1395-1400.2005.View ArticlePubMedPubMed CentralGoogle Scholar
  29. Cong M, Heneine W, García-Lerma JG: The Fitness Cost of Mutations Associated with Human Immunodeficiency Virus Type 1 Drug Resistance Is Modulated by Mutational Interactions. J Virol. 2007, 81: 3037-3041. 10.1128/JVI.02712-06.View ArticlePubMedGoogle Scholar
  30. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2334/14/181/prepub

Copyright

© Abdissa et al.; licensee BioMed Central Ltd. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Advertisement