Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Prospective European-wide multicentre study on a blood based real-time PCR for the diagnosis of acute schistosomiasis

  • Dominic Wichmann1Email author,
  • Sven Poppert2,
  • Heidrun Von Thien2,
  • Joannes Clerinx3,
  • Sebastian Dieckmann4,
  • Mogens Jensenius5,
  • Philippe Parola6,
  • Joachim Richter7,
  • Mirjam Schunk8,
  • August Stich9,
  • Philipp Zanger10,
  • Gerd D Burchard2, 11 and
  • Egbert Tannich2
BMC Infectious DiseasesBMC series ¿ open, inclusive and trusted201313:55

DOI: 10.1186/1471-2334-13-55

Received: 6 October 2012

Accepted: 21 January 2013

Published: 30 January 2013

Abstract

Background

Acute schistosomiasis constitutes a rare but serious condition in individuals experiencing their first prepatent Schistosoma infection. To circumvent costly and time-consuming diagnostics, an early and rapid diagnosis is required. So far, classic diagnostic tools such as parasite microscopy or serology lack considerable sensitivity at this early stage of Schistosoma infection. To validate the use of a blood based real-time polymerase chain reaction (PCR) test for the detection of Schistosoma DNA in patients with acute schistosomiasis who acquired their infection in various endemic regions we conducted a European-wide prospective study in 11 centres specialized in travel medicine and tropical medicine.

Methods

Patients with a history of recent travelling to schistosomiasis endemic regions and freshwater contacts, an episode of fever (body temperature ≥38.5°C) and an absolute or relative eosinophil count of ≥700/μl or 10%, were eligible for participation. PCR testing with DNA extracted from serum was compared with results from serology and microscopy.

Results

Of the 38 patients with acute schistosomiasis included into the study, PCR detected Schistosoma DNA in 35 patients at initial presentation (sensitivity 92%). In contrast, sensitivity of serology (enzyme immunoassay and/or immunofluorescence assay) or parasite microscopy was only 70% and 24%, respectively.

Conclusion

For the early diagnosis of acute schistosomiasis, real-time PCR for the detection of schistosoma DNA in serum is more sensitive than classic diagnostic tools such as serology or microscopy, irrespective of the region of infection. Generalization of the results to all Schistosoma species may be difficult as in the study presented here only eggs of S. mansoni were detected by microscopy. A minimum amount of two millilitre of serum is required for sufficient diagnostic accuracy.

Background

Schistosomiasis is a parasitic infection with trematode flatworms of the genus Schistosoma. According to the World Health Organization (WHO) 200 million people in at least 76 countries are affected, most of them located in tropical and subtropical regions [1]. Most infections are attributable to three species: Schistosoma mansoni, S. haematobium, and S. japonicum[2]. The courses of human infections can be divided into acute and chronic forms. Acute schistosomiasis, also known as Katayama syndrome [3, 4], constitutes a fulminant allergic reaction with fever and eosinophilia and may be accompanied by skin, pulmonary, abdominal or even neurological symptoms. In general, these clinical courses are seen in patients experiencing their first Schistosoma infection and reflect an early immunological reaction against developing young worms during prepatency [5]. Accordingly, acute schistosomiasis is usually seen in non-immune travellers returning from Schistosoma endemic countries. Considering the broad differential diagnosis of fever and eosinophilia, an early and rapid diagnosis is required to circumvent unnecessary costly and time-consuming diagnostic procedures. However, acute schistosomiasis constitutes a diagnostic challenge as classical tools often fail to detect the parasite at this early stage of infection. Parasite microscopy following Katz-Kato smears or concentration techniques for helminth eggs, lack sensitivity, in particular, in individuals with a low parasite burden and during the prepatent period [6]. In settings with low transmission rates or in patients with low parasite burden immunological tests may be more sensitive than parasite microscopy [7]. Nevertheless, a substantial number of patients remain serologically negative at initial presentation [8, 9]. Moreover, the inability of serology to discriminate between active and past disease limits its clinical value for follow up investigations [10]. The detection of Schistosoma specific circulating anodic and cathodic antigens (CAA and CCA) in blood or urine, released by viable adult worms, has been tested in schistosomiasis endemic regions and sporadic experiences have been reported for the use in patients with acute schistosomiasis [1113]. Because the sensitivity of these tests greatly depends on the worm burden, they are probably not suited for the diagnosis of schistosomiasis in travellers with rather low worm burden.

Recently, we reported on the development of a new real-time polymerase chain reaction (PCR) test for the detection of Schistosoma specific DNA in blood of infected individuals [14], which revealed excellent performance for the diagnosis of acute schistosomiasis in a small group of travellers returning from Rwanda [15]. Here we report on a European-wide multicenter study to evaluate the use of this PCR for the diagnosis of acute schistosomiasis in larger number of patients returning from various destinations.

Methods

Study design

Evaluation of blood based real-time PCR testing in travellers returning from schistosomiasis endemic regions with suspected acute schistosomiasis in 11 specialized European centres in a prospective study from January 2009 to April 2012. In detail the participating countries were Belgium, France, Norway and Germany. The sites are institutions specialised in tropical or travel medicine and are members of the EuroTravNet (http://​www.​istm.​org/​eurotravnet/​main.​html) initiated by The International Society of Travel Medicine and which represents a collaborative network of the European Centre of Disease Control (ECDC). The study was approved by the Hamburg Ethics Committee of the Chamber of Physicians and complied with the Declaration of Helsinki. For the Oslo site data managing files were slightly modified according to local data security requirements, for the other sites no changes were required.

Inclusion criteria

Patients with a history of a recent travel to a schistosomiasis endemic region and freshwater contacts, an episode of fever (body temperature ≥ 38.5°C) and an absolute or relative eosinophil count of ≥700/μl or ≥10%, were eligible for participation (Group A; n = 38). In addition, 17 patients with high clinical suspect of acute schistosomiasis but without an episode of fever were also tested (Group B). An amount of at least 2 ml of serum was required for DNA extraction and PCR testing as well as for Schistosoma serology. Oral informed consent was obtained from every patient or their legal guardians.

Microscopic parasite detection

Microscopy of faecal or urine samples for the detection of Schistosoma eggs were done on individual decision of the attending physician at each centre according to established in-house protocols. In general, stool samples were analysed using the formol-ether concentration technique [16]. For detection of S. haematobium eggs, urine collected over a period of 24 hours or at least between 10 am and 2 pm was filtered and processed as described earlier [17].

Serum and plasma samples

Samples were sent to Hamburg by mail at room temperature and analysed for anti-Schistosoma specific antibodies and Schistosoma DNA.

Serology

All patient sera were tested for anti-schistosoma antibodies using an enzyme-immunoassay (EIA) and an immunofluorescence-assay (IFA), respectively [18, 19].

DNA preparation and real time PCR

DNA preparation from 2 ml serum was performed at the Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany, using the QIAamp Circulating Nucleic Acid Kit according to the manufacturers suggestion (Qiagen, Hilden, Germany). Detection of cell-free Schistosoma DNA was performed according to a previously published protocol [14]. The test targets the 121 bp tandem repeat sequence first described by Hamburger et al. [20] using the primer sequences SRA1 (CCACGCTCTCGCAAATAATCT) and SRS2 (CAACCGTTCTATGAAAATCGTTGT) as previously reported [14]. All PCRs were performed in duplicate. A test was considered positive when the threshold was attained within 45 PCR cycles (Ct-value < 45).

Diagnosis and treatment

A patient was considered positive for acute schistosomiasis when either microscopy, serology or PCR testing revealed a positive result. Treatment with Praziquantel according to local protocols was offered to every patient with a positive test result.

Results

Thirty-eight patients fulfilled the case definition (Group A). Four of them had a history of possible previous exposure to Schistosoma-contaminated water but had not developed symptoms after the first trip. The median time from the day of possible exposure to the onset of clinical symptoms and the median time from exposure to PCR were 35 days (range 12–184 days) and 61 days (range 20–302 days), respectively. Twelve of the patients presented within 6 weeks after the suspected exposure, the time span generally referred to as prepatent stage of S. mansoni. The median absolute eosinophil count was 2,290 μl-1 (range 870–33,050 μl-1). The various members of the study population have been travelled to 17 different African and Arabic countries with endemic schistosomiasis. The median age of the study population was 28 years (range 19 – 66 yr) and 76% were males. Reasons for travelling included: tourism (48%; n = 19), occupational travel (23%; n = 9), volunteer (21%; n = 8) and visiting friends and relatives (8%; n = 3). The patients´ characteristics are summarized in Table 1.
Table 1

Characteristics of patients with acute schistosomiasis fulfilling the inclusion criteria

Patient

Region of exposure

Reason for travel

Incubation time [days](1)

Time to diagnosis [days](2)

Eosinophils absolute[per μl]

PCR

Serology

Microscopy

1

Rwanda

Tourist

57

62

5.400

pos

pos

S.m.

2

Rwanda

Tourist

33

54

2.090

pos

(pos)

S.m.

3

Mozambique

Occupational

28

42

2.860

pos

pos

Ø

4

Ethiopia

Occupational

27

43

2.650

pos

Ø

Ø

5

Uganda

Occupational

38

56

1.920

pos

pos

Ø

6

Uganda

Occupational

20

32

1.600

pos

pos

n.a.

7

Malawi

Tourist

18

20

1.050

pos

pos

n.a.

8

Mozambique

Tourist

35

56

33.050

pos

Ø

n.a.

9

Yemen

Tourist

40

54

1.540

pos

pos

Ø

10

Malawi

Tourist

27

35

980

pos

Ø

Ø

11(3)

Kenya

Tourist

94

96

3.220

Ø

pos

Ø

12

Kenya

Tourist

184

302

1.100

pos

pos

Ø

13

Sudan

Occupational

27

33

3.350

pos

Ø

Ø

14

Tanzania

Volunteer

75

88

5.880

pos

pos

n.a.

15

East Africa

Volunteer

127

131

1.760

pos

pos

Ø

16(4)

Kenya

VFR

150

210

n.a.

pos

n.a.

S.m.

17

Uganda

Tourist

24

27

n.a.

pos

pos

n.a.

18

Malawi

Tourist

31

73

3.920

pos

Ø

n.a.

19

East Africa

Volunteer

32

104

4.010

pos

pos

Ø

20

Malawi

Tourist

31

34

1.780

Ø

Ø

Ø

21

Mali

Occupational

23

32

1.140

pos

Ø

Ø

22

Tanzania

Volunteer

62

66

2.800

pos

Ø

Ø

23

Madagascar

Tourist

35

38

2.640

pos

pos

n.a.

24

Madagascar

Occupational

92

261

890

pos

pos

n.a.

25

Madagascar

Occupational

122

152

870

pos

pos

Ø

26

East Africa

Tourist

24

36

3.150

pos

pos

Ø

27

Tanzania

Volunteer

47

76

1.700

pos

pos

S.m.

28

Tanzania

Volunteer

47

80

9.850

pos

pos

Ø

29

Tanzania

Volunteer

62

94

2.310

pos

pos

Ø

30

Tanzania

Volunteer

97

196

2.290

Ø

pos

Ø

31

Madagsacar

Occupational

n.a.

160

1.100

pos

pos

Ø

32

Madagascar

Tourist

17

43

1.020

pos

pos

S.m.

33(5)

Ghana

VRF

31

69

1.200

pos

pos

n.a.

34

Madagascar

Tourist

23

34

1.210

pos

pos

n.a.

35

Uganda

Tourist

41

53

2.900

pos

Ø

n.a.

36

Madagascar

Tourist

25

42

23.300

pos

pos

S.m.

37

Ghana

Tourist

40

46

1.660

pos

pos

n.a.

38

Tanzania

Tourist

27

119

2.340

pos

pos

n.a.

(1): Time from exposure to beginning of clinical symptoms.

(2): Time from exposure to diagnostics.

(3): Less than 2 ml of Serum was available for DNA extraction.

(4): Patient evaluated for liver transplantation due to known Hepatitis B Virus infection and eosinophilia after visiting her family.

(5): Patient with meningitis and eosinophils in cerebrospinal fluid, Schistosoma DNA detected by PCR in cerebrospinal fluid.

VFR Visiting relatives and friends.

n.a. Not available.

pos Positive.

Ø Negative.

(pos) Only one of two different serological tests for schistosomiasis shows a positive result.

S.m. eggs of S.mansoni.

Initial real-time PCR testing revealed positive detection of Schistosoma DNA in 35 patients. Of the remaining 3 patients with negative PCR results, the first one was part of a four patients cluster. He had an initial eosinophil count of 2,290 μl-1 and a positive serology. The three other patients in this cluster were positive by means of serology and PCR. All received Praziquantel early in the course of the disease and subsequently, laboratory results normalized and clinical symptoms resolved. Accordingly, the negative PCR result in this case was considered as false negative. The second patient with a negative PCR test result was considered true negative, since microscopy and serology remained negative during follow up. The third patient with a negative PCR test result provided only a small amount of serum for PCR testing of less than 2 ml. In favour of a conservative estimation we interpreted this result as false negative because serology was clearly positive and symptoms resolved after Praziquantel treatment. Thus blood based real-time PCR was able to detect acute schistosomiasis in 35 of 37 true positive patients (95%). In contrast, anti-schistosoma antibodies or Schistosoma eggs were detected in only 72% and 25%, respectively, of these patients.

For 8 patients follow-up data were available. Four patients presented with negative real-time PCR at their follow up visit. The remaining 4 demonstrated a significant decrease in Ct-values. Median follow-up times of patients with positive PCR test results versus patients with negative PCR test results were 6 and 18 months respectively (data not shown).

In addition, 17 patients (Group B) with high clinical suspect for acute schistosomiasis but without an episode of fever were tested (Table 2). The incubation time and the time from exposure to diagnostic work up was 38 days (range 14–93 days) and 64 days (range 17–96 days), respectively. Sixteen patients were males. The median age was 13 years (range: 6 – 60 yr) and the median eosinophil count was 1,960 μl-1 (range 1,040–14,270 μl-1). The decision for testing these patients was based on high eosinophil counts, a history of recent travelling to a schistosomiasis endemic region and at least one of the following symptoms: fatigue, gastro-intestinal symptoms, rash or exanthema. Blood based real-time PCR testing was negative in 5 of these patients. In these 5 patients, initial serological testing revealed a positive result in one patient and inconclusive results in two patients. On follow up visits, all of them were serologically negative. Microscopic examination of stool samples was negative in all patients at initial presentation and during follow up. Of the remaining 12 patients, one was returning from Togo with positive serology and microscopy and the other 11 were part of a travel group returning from Rwanda. In this cluster reported earlier [15], PCR was positive in all of them, whereas positive serology or microscopy at initial testing was detected in only 7 of them.
Table 2

Characteristics of patients with high suspicion of acute schistosomiasis but without fever

Patient

Region of exposure

Reason for travel

Incubation time [days](1)

Time to diagnosis [days](2)

Eosinophils absolute [per μl]

PCR

Serology

Microscopy

39

Togo

VFR

51

95

6,000

pos

pos

S.m.

40

Brazil

Tourist

39

66

11,640

Ø

Ø

Ø

41

Guinea

Tourist

14

17

1,090

Ø

pos

Ø

42

Uganda

Occupational

38

44

n.a.

Ø

pos

n.a.

43

Egypt

Tourist

26

40

1,100

Ø

Ø

Ø

44

Malawi

Tourist

37

40

1,040

Ø

(pos)

Ø

45

Rwanda

Tourist

47

54

2,640

pos

Ø

S.m.

46

Rwanda

Tourist

62

90

14,150

pos

pos

S.m.

47

Rwanda

Tourist

57

62

1,150

pos

Ø

Ø

48

Rwanda

Tourist

93

96

2,860

pos

(pos)

S.m.

49

Rwanda

Tourist

25

54

14,270

pos

pos

S.m.

50

Rwanda

Tourist

n.a.

96

11,120

pos

pos

S.m.

51

Rwanda

Tourist

n.a.

96

1,960

pos

pos

Ø

52(3)

Rwanda

Tourist

n.a.

62

1,290

pos

Ø

Ø

53(3)

Rwanda

Tourist

n.a.

96

1,210

pos

(pos)

S.m.

54(3)

Rwanda

Tourist

n.a.

96

2,120

pos

(pos)

Ø

55(3)

Rwanda

Tourist

n.a.

96

1,700

pos

pos

S.m.

(1): Time from exposure to beginning of clinical symptoms.

(2): Time from exposure to diagnostics.

(3): Persons from cluster, exposed 2 years before at the same location as well, and not previously diagnosed.

VFR Visiting relatives and friends.

n.a. Not available.

pos Positive.

Ø Negative.

(pos) Only one of two different serological tests for schistosomiasis shows a positive result.

S.m. eggs of S.mansoni.

Discussion

To our knowledge this is the first multicenter study on acute schistosomiasis in travellers residing in non-endemic countries. Moreover, it constitutes the largest prospective study on a blood based real-time PCR for the diagnosis of the disease. The high rate of positive PCR results within the study population may be in part attributed to the fact that the participating centres are well familiar with this otherwise rare disease of acute schistosomiasis as all centres are specialized in travel and tropical medicine.

The results presented here support previous findings that PCR for the detection of Schistosoma DNA in serum outperforms other diagnostic test such as serology or microscopy in the early phase of the infection, particular in the prepatent stage of human schistosomiasis [14], as demonstrated by the twelve patients presenting within 42 days after the suspected exposure. By PCR, a correct diagnosis was made in 95% of patients, despite the heterogeneous characteristics of the study population (17 endemic countries - cluster and single patients), which underlines the robustness of blood base real-time PCR testing for the diagnosis of acute schistosomiasis. In addition, PCR was able to exclude active Schistosoma infections in six patients, of whom 50% were suspected due to positive serology (1 positive, 2 inconclusive). Thus, the results support previous observations that the PCR test system used in this study is highly sensitive and specific [14]. Accordingly, this test system has substantial added value for an early and rapid decision making to circumvent cost-intensive and time-consuming diagnostic procedures and to prevent unnecessary therapies. Cost for one PCR test (materials and reagents) are roughly 2 US$, thus the test is a useful addition in the differential diagnosis in patients with fever and eosinophilia after travelling to schistosomiasis endemic countries but is not generally recommended as a screening assay for returning travelers.

A considerable disadvantage of classical Schistosoma diagnostics is the persistence of serologic markers and egg shedding after successful treatment. Previous studies in experimentally infected mice [14] suggested that blood based real-time PCR testing might be suitable not only for initial diagnosis but also for follow up monitoring. This is further supported by our findings in 8 patients, for whom follow up data were available. These results suggest a significant decline in Ct-values in response to treatment. Clearly negative PCRs are expected after a longer period of time due to the high sensitivity of PCR and the carry over of DNA from slowly degenerating eggs in the tissue. However, for a definite conclusion on the usefulness of PCR for monitoring of schistosomiasis treatment the follow-up of a larger number of patients is required.

The highly repetitive 121 bp DNA fragment used as target sequence in the real-time PCR assay constitutes about 12% of the S. mansoni genome [20]. Although this sequence is detected in S. haematobium and S. japonicum as well [20, 21] sensitivity of PCR for the latter two species might be reduced. As far as species could be determined by microscopic egg morphology, the vast majority of cases in this study were due to infections by S. mansoni. Thus, our results may not allow generalization to infections with Schistosoma species other than S. mansoni. Evaluation of blood based PCR for the diagnosis of acute schistosomiasis due to other Schistosoma species such as S. haematobium or S. japonicum requires further studies. Previous results with the assay used in this study indicated that the performance of the PCR using the 121 bp tandem target sequence on 2 ml serum samples works very well in S. mansoni infection, but not in S. haematobium and in S. mekongi infection (Jan Clerinx, personal communication). Likewise, additional studies are required to evaluate the usefulness of blood-based PCR for the diagnosis of chronic schistosomiasis, in particular, in suspected cases from endemic countries, with a positive serology but negative parasite microscopy. Moreover, recent studies on, PCR performed with urine or fecal samples to detect S. haematobium or S. mansoni infection have shown rather promising results [2225]. However, further studies are required to determine, whether urine and/or feces PCR is sensitive to detect early schistosoma infection as it is the case in patients with acute schistosomiasis.

Conclusion

For the early diagnosis of acute schistosomiasis, real-time PCR for the detection of Schistosoma DNA in serum is more sensitive than classic diagnostic tools such as serology or microscopy, irrespective of the region of infection. Generalization of the results to all Schistosoma species may be difficult as in the study presented here only eggs of S. mansoni were detected by microscopy. A minimum amount of two millilitre of serum is required for sufficient diagnostic accuracy.

Declarations

Acknowledgement

The study was funded by grant support from the Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. The funding source had no role in the design, conduct or reporting of the study or to submit the manuscript for publication.

Authors’ Affiliations

(1)
Department of Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf
(2)
Bernhard Nocht Institute for Tropical Medicine
(3)
Department of Clinical Sciences, Institute for Tropical Medicine Antwerp
(4)
Institute of Tropical Medicine & International Health, Charité Universitätsmedizin Berlin
(5)
Department of Infectious Diseases, Oslo University Hospital
(6)
Department of Infectious Diseases an Tropical Medicine, Hôpital Nord
(7)
Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Duesseldorf
(8)
Department for Infectious Diseases and Tropical Medicine, Ludwig Maximilian University Munich
(9)
Missionsaerztliche Klinik
(10)
Institute of Tropical Medicine, Eberhard Karls University
(11)
Department of Tropical Medicine, University Medical Centre Hamburg-Eppendorf

References

  1. Chitsulo L, Engels D, Montresor A, Savioli L: The global status of schistosomiasis and its control. Acta Trop. 2000, 77: 41-51. 10.1016/S0001-706X(00)00122-4.View ArticlePubMed
  2. Strickland GT RB: Schistosomiasis. Hunter’s Tropical Medicine. Edited by: Strickland GT. 2000, Philadelphia, PA: W.B. Saunders Company, 804-832. Eighth
  3. Doherty JF, Moody AH, Wright SG: Katayama fever: an acute manifestation of schistosomiasis. BMJ (Clinical research ed. 1996, 313: 1071-1072. 10.1136/bmj.313.7064.1071.View Article
  4. Jaureguiberry S, Paris L, Caumes E: Acute schistosomiasis, a diagnostic and therapeutic challenge. Clin Microbiol Infect. 2010, 16: 225-231. 10.1111/j.1469-0691.2009.03131.x.View ArticlePubMed
  5. Ross AG, Vickers D, Olds GR, Shah SM, McManus DP: Katayama syndrome. Lancet Infect Dis. 2007, 7: 218-224. 10.1016/S1473-3099(07)70053-1.View ArticlePubMed
  6. Knopp S, Rinaldi L, Khamis IS, Stothard JR, Rollinson D, Maurelli MP, Steinmann P, Marti H, Cringoli G, Utzinger J: A single FLOTAC is more sensitive than triplicate Kato-Katz for the diagnosis of low-intensity soil-transmitted helminth infections. Trans R Soc Trop Med Hyg. 2009, 103: 347-354. 10.1016/j.trstmh.2008.11.013.View ArticlePubMed
  7. Cesari IM, Ballen DE, Mendoza L, Matos C: Detection of Schistosoma mansoni membrane antigens by immunoblot analysis of sera of patients from low-transmission areas. Clin Diagn Lab Immunol. 2005, 12: 280-286.PubMed CentralPubMed
  8. Hamilton JV, Klinkert M, Doenhoff MJ: Diagnosis of schistosomiasis: antibody detection, with notes on parasitological and antigen detection methods. Parasitology. 1998, 117 (Suppl): S41-S57.PubMed
  9. Zhu YC: Immunodiagnosis and its role in schistosomiasis control in China: a review. Acta Trop. 2005, 96: 130-136. 10.1016/j.actatropica.2005.07.007.View ArticlePubMed
  10. Rabello AL, Garcia MM, da Silva RA P, Rocha RS, Katz N: Humoral immune responses in patients with acute Schistosoma mansoni infection who were followed up for two years after treatment. Clin Infect Dis. 1997, 24: 304-308. 10.1093/clinids/24.3.304.View ArticlePubMed
  11. Coulibaly JT, Knopp S, N'Guessan NA, Silue KD, Furst T, Lohourignon LK, Brou JK, N'Gbesso YK, Vounatsou P, N'Goran EK, Utzinger J: Accuracy of Urine Circulating Cathodic Antigen (CCA) Test for Schistosoma mansoni Diagnosis in Different Settings of Cote d'Ivoire. PLoS Negl Trop Dis. 2011, 5: e1384-10.1371/journal.pntd.0001384.PubMed CentralView ArticlePubMed
  12. Shane HL, Verani JR, Abudho B, Montgomery SP, Blackstock AJ, Mwinzi PN, Butler SE, Karanja DM, Secor WE: Evaluation of urine CCA assays for detection of Schistosoma mansoni infection in Western Kenya. PLoS Negl Trop Dis. 2011, 5: e951-10.1371/journal.pntd.0000951.PubMed CentralView ArticlePubMed
  13. Gundersen SG, Ravn J, Haagensen I: Early detection of circulating anodic antigen (CAA) in a case of acute schistosomiasis mansoni with Katayama fever. Scand J Infect Dis. 1992, 24: 549-552. 10.3109/00365549209052643.View ArticlePubMed
  14. Wichmann D, Panning M, Quack T, Kramme S, Burchard G-D, Grevelding C, Drosten C: Diagnosing schistosomiasis by detection of cell-free parasite DNA in human plasma. PLoS Negl Trop Dis. 2009, 3: e422-10.1371/journal.pntd.0000422.PubMed CentralView ArticlePubMed
  15. Clerinx J, Bottieau E, Wichmann D, Tannich E, Van Esbroeck M: Acute schistosomiasis in a cluster of travelers from Rwanda: diagnostic contribution of schistosome DNA detection in serum compared to parasitology and serology. J Travel Med. 2011, 18: 367-372. 10.1111/j.1708-8305.2011.00552.x.View ArticlePubMed
  16. Feldmeier H, Stevens WJ, Bridts CH, Daffalla AA, Büttner DW: Effect of chemotherapy and reinfection on IgE-containing and IgG-containing circulating immune complexes, serum IgE and IgE antibodies in patients chronically infected with Schistosoma mansoni and Schistosoma haematobium. Int Arch Allergy Appl Immunol. 1983, 72: 211-218. 10.1159/000234870.View ArticlePubMed
  17. Peters PA, Mahmoud AA, Warren KS, Ouma JH, Siongok TK: Field studies of a rapid, accurate means of quantifying Schistosoma haematobium eggs in urine samples. Bull World Health Organization. 1976, 54: 159-162.
  18. Feldmeier H, Büttner DW: Immunodiagnosis of Schistosomiasis haematobium and schistosomiasis mansoni in man. Application of crude extracts from adult worms and cercariae in the IHA and the ELISA. Zentralbl Bakteriol Mikrobiol Hyg [A]. 1983, 255: 413-421.
  19. Tarp B, Black FT, Petersen E: The immunofluorescence antibody test (IFAT) for the diagnosis of schistosomiasis used in a non-endemic area. Trop Med Int Health. 2000, 5: 185-191. 10.1046/j.1365-3156.2000.00539.x.View ArticlePubMed
  20. Hamburger J, Turetski T, Kapeller I, Deresiewicz R: Highly repeated short DNA sequences in the genome of Schistosoma mansoni recognized by a species-specific probe. Mol Biochem Parasitol. 1991, 44: 73-80. 10.1016/0166-6851(91)90222-R.View ArticlePubMed
  21. Hamburger J, He N, Abbasi I, Ramzy RM, Jourdane J, Ruppel A: Polymerase chain reaction assay based on a highly repeated sequence of Schistosoma haematobium: a potential tool for monitoring schistosome-infested water. Am J Trop Med Hyg. 2001, 65: 907-911.PubMed
  22. Ibironke OA, Phillips AE, Garba A, Lamine SM, Shiff C: Diagnosis of Schistosoma haematobium by detection of specific DNA fragments from filtered urine samples. Am J Trop Med Hyg. 2011, 84: 998-1001. 10.4269/ajtmh.2011.10-0691.PubMed CentralView ArticlePubMed
  23. Ibironke O, Koukounari A, Asaolu S, Moustaki I, Shiff C: Validation of a new test for Schistosoma haematobium based on detection of Dra1 DNA fragments in urine: evaluation through latent class analysis. PLoS Negl Trop Dis. 2012, 6: e1464-10.1371/journal.pntd.0001464.PubMed CentralView ArticlePubMed
  24. Enk MJ, Oliveira E, Silva G, Rodrigues NB: Diagnostic accuracy and applicability of a PCR system for the detection of Schistosoma mansoni DNA in human urine samples from an endemic area. PLoS ONE. 2012, 7: e38947-10.1371/journal.pone.0038947.PubMed CentralView ArticlePubMed
  25. Cnops L, Tannich E, Polman K, Clerinx J, Van Esbroeck M: Schistosoma real-time PCR as diagnostic tool for international travellers and migrants. Trop Med Int Health. 2012, 17: 1208-1216. 10.1111/j.1365-3156.2012.03060.x.View ArticlePubMed
  26. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:http://​www.​biomedcentral.​com/​1471-2334/​13/​55/​prepub

Copyright

© Wichmann et al.; licensee BioMed Central Ltd. 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement